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Abstract—Asset and personnel visibility is crucial for improv-
ing workflow efficiency and reducing waste in smart facility, e.g.,
warehouse applications. 5G networks and technologies provide
the high bandwidth and low latency necessary for communicating
and fusing multi-modality sensor data, such as high-definition
video, time series with high temporal resolution. In this work, we
propose to use cross modality learning to develop a self-learning
system for locating and tracking indoor personnel with video and
WiFi channel state information (CSI) data. We use video data
and our computer vision system to provide location annotation
automatically, and train a feedforward neural network model for
WiFi CSI data in our localization algorithm. Our experimental
results show that our localization system is capable of locating
a person with submeter accuracy in real-time without laborious
manual data annotation.

Index Terms—Ambient Intelligence, Context Awareness,
Cyber-physical Systems, Machine Learning, Internet of Things

I. INTRODUCTION

5G networks provide the speed and capability that enable

a multitude of technologies in digital transformation of in-

dustrial asset and operations applications. For an industrial

warehouse application, asset and personnel visibility is the

key to warehouse inventory management. 5G networks and

technologies provide the high bandwidth and low latency

needed to acquire and analyze real-time multi-modality sensor

data for improving workflow efficiency and reducing waste and

cost. In this work, we propose to leverage the 5G testbed at GE

Research to develop a personnel tracking system with multi-

modal sensors and cross modality learning for our warehouse

application [1].

The location of the warehouse personnel is one of the

most important context information for staff safety, security,

and asset and operations management purposes. 5G networks

and technologies provide the bandwidth and capability to

collect data from multi-modal sensors to locate and track
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personnel in real-time. Various techniques have been proposed

and developed to achieve accurate and robust indoor people

localization solutions. For example, computer vision (CV)-

based people tracking system has become one of the most

accurate localization systems in good light condition, due to

the recent development of deep learning techniques. However,

a CV-based system suffers from the occlusion problem and is

sensitive to light condition of an environment. On the other

hand, a radio frequency (RF)-based system does not suffer

from the occlusion issue, but the performance is significantly

affected by the multi-path effect of an indoor environment [2].

For our smart warehouse applications, we have investigated

both CV-based localization system and various RF-based

systems, which include Bluetooth, ultra wide-band (UWB),

mmWave Radar and WiFi channel state information (CSI)

systems. In this paper, we show our research effort and

progress in developing a hybrid CV and WiFi CSI-based

personnel localization system.

Since CV and RF sensing modalities are complimentary in

human sensing, recent studies have shown significant perfor-

mance improvement in object detection, human identification

and localization by fusing these two sensing modalities [3]–

[5]. While these state-of-the-art systems focus on different

sensing aspects, e.g., object detection in [3], localization in

[4], and identification in [5], they have used one common ap-

proach: cross modality learning. That is, they use one sensing

modality in its favorite work condition, e.g., CV system in

good light condition, to train a deep neural networks model

for the other modality. The major difference between this work

and the state-of-the-art vision-WiFi localization work in [4] is

that we do not rely on the people to carry any WiFi devices,

instead, we use our CV system to train our WiFi CSI system

to locate people, who do not cooperate with the localization

system by carrying any devices. That is, we apply the cross

modality learning approach to passive non-cooperative people
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Fig. 1: 5G-enabled personnel tracking system architecture.

localization and tracking [6]–[8].

To achieve WiFi CSI-based device-free localization with

cross modality learning, we first integrate and synchronize

our CV tracking system with a WiFi CSI system. Then, we

train a multi-layer perceptron (MLP) neural network model

for the CSI-based system, in which the data annotation, i.e.,

location ground truth labeling can be automatically provided

by the CV system in good light condition. When the light

condition is poor or for regions without cameras, the tracking

system will switch to the CSI-only online mode using the

trained MLP model. The overall personnel tracking system

architecture with 5G connectivity is shown in Figure 1. Note

that recent studies propose data fusion method to achieve

centimeter level accuracy for joint communication and device-

based localization using the same 5G infrastructure [9]. For

device-free wireless sensing, recent study in [10] proposes to

use 5G devices as the sensing modality for human occupancy

and activity detection. In this work, we focus on device-free

localization, and we aim to leverage existing WiFi network

infrastructure as sensing purpose, while using 5G testbed for

communication purpose.

Finally, we perform real-world experiments to evaluate

our method and system in a typical office environment. We

investigate the performance of MLP neural network with

different hyperparameters. The experimental results show that

our localization system is capable of tracking a person in real-

time with less than 0.5m root mean squared error (RMSE) for

over 40 tests. The rest of this paper is organized as follows.

Systems and methods are discussed in Section II. Experiments

and results are presented in Section III. Section IV concludes

the paper.

II. SYSTEMS AND METHODS

In this section, we describe our 5G testbed, vision and RF

hardware. We also discuss how we use cross modality learning

to develop a vision-WiFi-based personnel localization system.

A. Systems

First, we describe the 5G testbed system, the device-free

people localization system that we have developed, and the

commodity systems that we have deployed and used for the

ambient intelligence, e.g., smart warehouse applications. The

in-house localization systems include a computer vision-based

system, and two WiFi CSI-based systems. The commodity

systems include a mmWave Radar system, a UWB system,

and a motion capturing system to provide 3D positioning with

millimeter accuracy.

1) 5G System for Smart Warehouse: Modern warehouse

is highly dependent on timely collaboration among multiple

sensing devices for efficient operations. One of the key enabler

of smart warehouse is the availability of data from multi-

modal sensor for planning and execution. In this work, we

propose a multi-modal sensing solution using commodity WiFi

and vision sensors for tracking personnel location within a

warehouse. The CSI data from WiFi sensor and the video data

from camera sensor should be communicated in real-time to

achieve continuous tracking. 5G mmWave based communica-

tion backbone is a perfect candidate solution that enables us

to transfer data in near real-time using wireless medium and

in a fraction of cost avoiding expensive wired infrastructure.

As shown in the system architecture in Figure 1, we envision

our sensors are equipped with 5G mmWave communication

modems. We also consider 5G small cell based deployment

scenario due to mmWave’s limited coverage area. The small

cell base stations are then connected to the 5G private core,

where we can host an application server, which performs

personnel tracking that we discuss in details next. As 5G

communication devices become more widely deployed, we

believe 5G technologies and devices can be used for both
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human sensing and data communication purposes. We leave

this as future research topic.
2) WiFi CSI-based tracking system: As the IEEE 802.11n

standard and WiFi MIMO devices are widely used nowadays,

WiFi channel state information (CSI)-based localization be-

comes a promising solution using low-cost commodity hard-

ware. We have investigated two commodity WiFi hardware

devices for developing our WiFi CSI-based people tracking

systems: Intel 5300 network interface card (NIC) with open-

source IEEE 802.11n toolkit [11], and regular 802.11n WiFi

devices with Nexmon CSI monitor [12].

(a)

(b)

Fig. 2: Amplitude data of CSI measurements from two MIMO

antenna pairs (a) Tx1-Rx1, (b) Tx3-Rx3.

For the Intel 5300 system, we collect CSI measurements

between a WiFi beacon, i.e., WiFi router with three antennas,

and an Intel 5300 NIC also with three antennas. The Intel

5300 NIC reports CSI from 3x3 multiple-input multiple-

output (MIMO) antennas on 30 OFDM subcarriers with a

total bandwidth of 20 MHz [11]. The amplitude of the CSI

data from two MIMO pairs recorded in the same experiment

are shown in Figure 2, from which we can clearly see the

antenna diversity of the CSI data. For the Nexmon CSI system,

we use a Raspberry Pi board with the Nexmon toolkit as

the monitor to collect the CSI data between a WiFi access

point and its connected IEEE 802.11n devices. We can obtain

CSI data from 56 OFDM subcarrier, on which we investigate

the indoor multi-path effect as in SectionIII-B. However, we

cannot control its packet data rate as the Intel 5300 system.

Thus, we choose to use the Intel CSI system to test the idea of

cross modality learning in personnel localization. However, the

general approach is applicable to the Nexmon system, which

we leave as future work.

3) Vision-based tracking system: Due to the recent de-

velopment of computer vision and deep learning techniques,

the vision-based people tracking system has become one of

the leading systems in the multiple object tracking scenario.

We use the Intel RealSense RGB-D camera as our system

hardware, and we develop a people tracking software pipeline

following the tracking-by-detection paradigm [13].

Our tracking pipeline includes three major components:

object detection, position estimation, and multi-target tracking.

The person detection task is achieved by applying the state-of-

the-art YOLOv5 object detection algorithm to the RGB images

captured by the camera. YOLOv5 is the latest you-only-look-

once (YOLO) object detection architecture and model [14],

which is capable of generating object detection results, i.e., the

bounding box of the person in real-time, as shown in Figure 3.

Once the bounding boxes of the detected people are generated,

the perspective-n-point algorithm is used to project the 2D

coordinates of the bounding boxes to the 3D world coordinate,

using the intrinsic and extrinsic parameters of a calibrated

camera. Finally, for the multiple targets tracking scenario, the

DeepSort algorithm [13] incorporates both the object motion

and appearance information for solving the object assignment

problem, which achieves better performance than the classical

Hungarian algorithm. Note that for the single person tracking

scenario, the tracking algorithm can smooth the trajectory, and

the previous study shows that our CV system can accurately

track the 2D location of a person in good light condition in

real-time [15].

Fig. 3: Vision-based tracking result.

4) COTS tracking systems: In addition to the WiFi CSI and

computer vision-based people tracking systems, we have de-

ployed and evaluated other tracking systems with commercial-

off-the-shelf (COTS) hardware as part of our testbed. The

COTS tracking systems include the mmWave Radar system

with IWR6843 sensor from TI, the ultra wide-band (UWB)

system from Pozyx, and the motion capturing system from

Vicon. We are also deploying and evaluating the Bluetooth

tracking system from LocatorX with our 5G testbed system.
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The cross modality learning approach can be applied to

combinations of the in-house tracking systems and COTS

systems as well. We leave it as future work as discussed in

Section III-C.

B. Cross Modality Learning

Now we discuss how we apply cross modality learning

to bootstrap two complimentary sensing systems, computer

vision (CV) tracking system and WiFi CSI system.

First, we integrate and synchronize the CV and CSI systems.

We use the CV system for people detection, and only record

camera image data and WiFi CSI data when at least a person

is detected. Once human presence is detected, we use time

stamps to synchronize data collected on two systems. In good

light condition, we use the location estimates from the CV

system as the training data for the CSI system. When the light

is turned off, we stop using the CV data for ground truth

labeling purpose.

Once we have the CV and CSI data synchronized, we use

the label from the CV system to train a feedforward MLP

neural network model for the CSI system. Specifically, we

build a MLP neural network with ReLU activation function,

Adam optimizer, L2 regularization, and a constant learning

rate. We have tested using different numbers of hidden layers,

and also tested the effects of different maximum iterations

used in the Adam optimizer, as shown in Section III-B. Note

that we only use the amplitudes of the CSI measurements

on all subcarriers and MIMO pairs as the inputs of the CSI

localization system, since the CSI data show that the phase

information of CSI is sensitive to even subtle human motion.

After the MLP model is trained with initial label from

the CV system, the WiFi CSI system works even in poor

light condition, or when the light is turned off. Once the

light condition change is detected, the system can switch

between online testing phase and offline training phase. As

the offline training can be performed whenever the ambient

light condition is sufficient, the CSI system can be calibrated

automatically and continuously as the environment multi-path

effect changes. Thus, the joint CV-CSI system become a

continuous and self-learning system, which is more robust to

light condition change and multi-path effect change.

Fig. 4: Layout of experiments.

III. EXPERIMENTS AND RESULTS

A. Experiments

We deploy our CV and CSI systems and perform experi-

ments to track a person in the corridor of our lab space, as

shown in the experiment layout in Figure 4. A WiFi beacon

and a workstation with Intel 5300 NIC are deployed at two

diagonal corners, and two RealSense cameras are deployed on

the ceiling to monitor the pedestrian flow. During our experi-

ments, we ask two volunteers to walk along predefined paths

in the corridor space. Each volunteer performs experiments

individually for 20 times, and we collect a dataset with 40

trials from our human subjects. From Figure 4 we can see that

there are walls between our WiFi devices, and it is a multi-path

rich environment as we verify on the CSI data next.

Fig. 5: Impulse and frequency responses showing multi-path

effect from CSI data on 56 sub-carriers.

B. Results

As mentioned in Section I, the multi-path effect is one of

the major challenges for RF-based indoor localization systems.

Before we apply neural network models on the dataset, we

first investigate the multi-path effect on the CSI data from the

OFDM subcarriers of the IEEE 802.11n channel [11]. Here we

use the CSI data collected from the Nexmon system. Since the

frequency response of the wireless channel can be represented

by the CSI values on the OFDM subcarriers [2], the time-

domain impulse response can be computed by performing

inverse Fourier transform on the CSI data. As shown in

Figure 5, there are multiple peaks in the computed impulse

response, which represent received radio signals from both

line-of-sight (LOS) path and non-LOS path.

TABLE I: RMSE vs. test sample size.

Test size 10% 20% 30% 40% 50%

Max iteration=100 0.50 0.52 1.56 0.82 0.65

Max iteration=400 0.47 0.49 1.53 0.59 0.88

Max iteration=800 0.48 0.52 0.87 0.62 0.99

Now we apply the MLP model on the CSI data that we

have collected to evaluate the system performance. We have
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(a)

(b)

Fig. 6: Localization results of the 40th test trial: (a) X

coordinate estimates, (b) Y coordinate estimates.

Fig. 7: CDF of localization errors from different hyperparam-

eters.

performed leave-one-out (LOO) evaluation and test-train split

cross validation. In our LOO evaluation, for each of the 40

trials, we use data from 39 trials to train the MLP model,

and apply the model on that test case. Then, we calculate

the root mean squared error (RMSE) and the cumulative

distribution function (CDF) of the position error, for each of

the 40 trials. For example, for the 40th trial, the estimated

XY coordinates are shown in Figure 6 together with the

location ground truth provided by our computer vision system.

In addition, the CDF of the localization error is shown in

Figure 7, with different hyperparameters, e.g., number of

neurons and number of hidden layers in the neural network,

and maximum iteration in the Adam optimizer. We see that the

localization performance improves as the numbers of neurons

and hidden layers increase. The median error is 0.7 m when

we only use ten neurons, three hidden layers in the MLP

neural network, and 100 maximum iterations in the optimizer;

while the median error is less than 0.5 m when we have 20

neurons in the MLP network. A MLP with 100 neurons, 5

hidden layers and 400 maximum iterations achieves the best

accuracy performance as shown in Figure 7. We also find that

there is diminishing return in localization accuracy when the

maximum iteration number is above 400.
We also have performed test-train split cross validation.

For different test sample sizes from 10% to 50%, the root

mean squared errors (RMSE) are listed in TableI. We see

that as the test sample increases, the RMSE tends to increase,

since there are fewer data samples used in training the MLP

model. Finally, we also calculate the RMSEs for all 40 trials,

and the average RMSE is 0.4 m. That is, our CSI system

achieves submeter accuracy at this 32.7 m by 2.4 m corridor

environment.

C. Future Work
We have deployed and evaluated our tracking system at

only one indoor environment. We plan to deploy the system

to other locations, perform experiments, collect more dataset

and compare performance with other state-of-the-art device-

free localization systems in the future. As mentioned earlier,

we also plan to deploy and compare the Intel 5300 CSI system

with the Nexmon CSI system, which use different system

architectures. In addition, we focus on single person case in

this work, but the cross modality learning and MLP neural

networks model also apply to the multiple people tracking

scenario. Finally, the cross modality learning approach is ap-

plicable to other sensing modality combination. For example,

mmWave radar provides finer temporal resolution and can be

integrated with CV system for localization and other human

sensing applications as well.

IV. CONCLUSION

We have developed a multi-modal personnel localization

and tracking system using vision and WiFi CSI data for our 5G

smart warehouse application. We have applied the cross modal

learning approach to device-free localization to bootstrap

the individual vision and WiFi systems. We have performed

real-world experiments in a typical office environment, and

our experimental results show that we can achieve submeter

tracking accuracy without labor-intensive manual annotation

in neural network model training.
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