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Abstract 

In this paper, we propose to use an adaptive control method 
as the basis of a reinforcement learning algorithm for robot-
ic imitation learning. In the learning stage, robots use adap-
tive control method-based reinforcement learning algorithm 
to learn the parameters of dynamical systems. In the genera-
tion stage, robots use the learned dynamic system parame-
ters and the pre-defined controller to drive the configuration 
states of the robot to move along desired state trajectories. 
One simulation experiment and one practical experiment on 
a robot are carried out to validate the effectiveness of our 
algorithm. The experimental results validate that the learn-
ing of the system parameters converges very fast and the 
learning results can improve the system performance of 
generating similar motion trajectories. 

 Introduction   
Robotic Imitation Learning has been considered as a kind 
of power tools of transferring skills from humans to robots. 
From Uchiyama’s experiment (Uchiyama 1978) in 1970s 
and Atkeson’s trajectory learning experiment (Atkeson and 
McIntyre 1986) in 1980s, researchers proposed various 
methods for robots to learn behaviors (Argall et al. 2009), 
especially the motion trajectories, from humans. Figure 1 
displays the basic idea of robotic imitation learning which 
is to model the knowledge or skills demonstrated by hu-
mans and to generate similar motion trajectories in similar 
but slightly different situations. These methods could be 
divided into two categories (Calinon, Guenter, and Billard 
2007): one is to train robots to learn motion trajectories 
(Ijspeert, Nakanishi, and Schaal 2003), and the other is to 
train robots to learn behavior sequences (Dillmann, Kaiser, 
and Ude 1995). Either method involves system modeling 
or machine learning methods at the learning stage. 

Some researchers believe that the offline learning meth-
ods could enable robots to generate similar motion trajecto-
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ries after generalizing motion primitives (Ijspeert, Nakani-
shi, and Schaal 2003) (Peters and Schaal 2006). While 
some researchers consider it as a control problem for ro-
bots, which aims at driving configuration states of a robot 
to follow the states on a desired configuration trajectory 
(Arimoto 1990). The major difference between the two 
types of algorithms is how to modify the configuration of a 
robot. Conventionally, offline learning methods enable ro-
bots to have a precise mathematical model to describe the 
desired motion dynamics, which use a few parameters ra-
ther than a large number of data points and save storage 
space. 
 In our research, we are interested in finding a control 
method for robots to track the desired motion trajectories. 
However, we do not know the internal dynamics of 
demonstrated motion trajectories. If we can teach a robot to 
learn the internal dynamics of a demonstrated motion tra-
jectory, the motions will be more precisely modeled and 
generated. And we believe that the offline iteration learn-
ing could help robots learn the dynamics of the motion tra-
jectories in advance. 
 In this paper, the motivation is to develop an offline al-
gorithm to enable a robot to learn the internal dynamics 
feature of a demonstrated motion trajectory. Based on the 
learned results, the robot can use a control algorithm to 
generate control signals to drive the robot to follow the 
configuration states of a demonstrated motion trajectory. 

 
 

Figure 1 Imitation Learning Framework 
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 The proposed method is largely based on the learning 
algorithm we choose. Current learning algorithms are nor-
mally categorized into three types (Bishop 2006): super-
vised learning, unsupervised learning, and reinforcement 
learning. Reinforcement Learning (RL) is widely applied 
in robotic imitation learning (Peters and Schaal 2008). Us-
ing RL methods, robots obtain rewards at each timing step 
or at the end of iterations and use such rewards to update 
the decision making policies. In imitation learning, the 
three types of algorithms are widely used in various do-
mains. In this paper, we proposed to apply an adaptive con-
trol method in reinforcement learning for robotic imitation 
learning. Adaptive control (Astrom and Wittenmark 1994) 
(Li 1990) is a popular control method which is applied in 
dynamic systems with varying parameters. Upon the com-
mon feature in both adaptive control and the general robot-
ic imitation learning, we believe that this control method is 
suitable for robots to improve policies through learning. 
 The rest of this paper is organized as follows: Section II 
reviews current research on robotic imitation learning; Sec-
tion III derives a reinforcement learning algorithm based 
on adaptive control method; Section IV uses some experi-
mental examples to explain how to apply this method in 
robotic imitation learning; Section V discusses the experi-
mental results proposes the future work; and Section VI 
concludes this paper. 

Related Work 
A well accepted imitation learning framework can be de-
scribed as: what to imitate, how to imitate, who to imitate, 
and when to imitate (Billard et al. 2007) (Calinon, Guenter, 
and Billard 2007). There are lots of replicating methods of 
generating motion trajectories the same as demonstrated 
motion trajectories. Readers can refer to this article (Argall 
et al. 2009) for more information. Adapting generation 
methods are of more interest in robotics community since 
it provides robots more flexible capability in various appli-
cation domains.  
 Ijspeert proposed Dynamic Movement Primitives 
(DMP) (Ijspeert, Nakanishi, and Schaal 2003), which is 
considered as a tool for attractor landscape learning. A 
one-dimensional DMP formulation could be represented 
as: 

� � � � � � � � � � �      (1) 
� � �          (2) 

where � is the goal state, � is the position on the generated 
trajectory, � is the velocity, and � is a non-linear model. In 
original DMP, �  is a regression model, which uses the 
weighted sum of basis functions to model the non-linear 
part of the motions. In our understanding, � is a non-linear 
regression model which modulates the system response. 

 Calinon and Billard proposed using Lagrangian methods 
(Calinon, Guenter, and Billard 2007) to minimize the dis-
tance between a demonstrated motion trajectory and gener-
ated motion trajectories in both the original data space and 
the dimension-reduced data space, called latent space. 
Adaptive methods used by Billard are also extended to 
Stable Estimator of Dynamical Systems (SEDS) (Neumann 
and Steil 2015), τ-SEDS (Khansari-Zadeh and Billard 
2011), and Locally Modulated Dynamical systems 
(LMDS) (Kronander, Khansari, and Billard 2015). 
 In order to enable robot to learn policy parameters, e.g., 
the weights for � in equation (1) is learned through trials. 
Reinforcement learning is widely utilized by robotics 
community. Peters applied Reinforcement Leaning to teach 
robots to learn policy parameters or motion primitives 
though an iterative learning process (Peters and Schaal 
2006). Thedorou proposed using optimal control for rein-
forcement learning applications (Theodorou, Buchli, and 
Schaal 2010). The charm of applying Reinforcement 
Learning is to provide a method for robots to find parame-
terized policies through trials. Other similar methods could 
be found in Ude’s method (Ude 2010) of using Gaussian 
Process to update policy parameters, Billard’s method 
(Billard 2007) of using Gaussian Mixture Model (GMM) 
to generalize demonstrations, etc.  

Methodology 

Background of Adaptive Control 
Mechanical systems are generally described by nonlinear 

equations where Lagrangian and Hamiltonian mechanics 
are used to represent the behavior of mechanical system. A 
system with � Degrees-Of-Freedom (DOFs) can be locally 
represented by � configuration states and satisfies the fol-
lowing equation: 

�

��

��

���
�

��

���
� �       (3) 

where � is Lagrangian function denoting the total energy of 
the system: 

� �� �� � � � �� � � � � � ����
�

���    (4) 
�� � ��         (5) 

� �� �  is the total kinetic energy, � �  is the potential 
energy, and �� is the input variable. 

By defining: 
� �� �� � � ��� � � � � � � � ���  (6) 

and after some mathematical derivations using equation (3), 
we could obtain: 

� � � � � �� � � � � � � �    (7) 
where � �  is the inner mas matrix, � �� �  is related to 
Coriolis and centrifugal matrix, and � �  is the gravitation-
al torque/force. 

� �� � � � � �

�

�

���� �

��
      (8) 
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� � �

�� �

��
         (9) 

In some situations, we want to control this non-linear dy-
namical system to drive the state � to move along a desired 
trajectory in a configuration space or other relevant spaces. 
Using the known non-linear dynamics equation (7), we can 
design many types of controllers to generate desired input � 
to control the plant.  

A typical usage of adaptive control in this situation is to 
estimate the parameters in equation (7) and design a corre-
sponding controller. 

A required trajectory is represented as �� � �� � �� , 
where �� � �� is the positions on a desired trajectory, and  
��  and �� are velocities and accelerations.  

A proportional-differential (PD) controller is designed 
as: 
� � � � �� � �� � � �� � �� � � �� � � �� � � �

� �   (10) 
where � � , � �� � , and � �  are the estimates of � � , 
� �� � , and � � .  

If the estimates are exactly the same as actual parameter 
matrices, the closed loop dynamics is : 

� � ��� � ��� � �      (11) 
By selecting �� and �� suitably, the error is reduced to 

zero as time goes to infinity. 
If the estimation is not perfect, the system dynamics is: 
� � � � ��� � ��� � �� � � � � �� � � � � �

 (12) 
where, 

� � � � � �� �       (13) 
� �� � � � �� � � � �� �      (14) 
� � � � � � � �       (15) 

The left hand side of equation (7) could be also described 
as: 

� � � � � �� � � � � � � � �� �� � �      (16) 
where � �� �� �  is a regressor matrix and � is an unknown 
parameter vector. 

Incorporating equation (7) (10) (13) (14) (15) (16), equa-
tion (11) could be written as: 

� � ��� � ��� � � � ��
� �� �� � �   (17) 

Define  
� � �� � �� � ��

� �� �� � �    (18) 

where � � �
� � �� �, � �

� �

��� ���
, and � � �

�
. 

In order to make the error converge to zero, we choose a 
Lyapunov function: 

� �� � � �
�
�� � � ���� �     (19) 

where � is a  positive definite matrix, and � is a solution to 
�
�
� � �� � ��. By differentiating equation (19), we ob-

tain: 
� �� � � � �

��� � � �� � � ��
� �� �� �

�

�
�
�� � ��     (20) 

If the update law is: 
� � ���� � � ��

� �� �� �
�

�
�
��        (21) 

� �� � � � �
��� � � �      (22) 

the system error converges to zero. 
 This method is widely used in non-linear control of ro-
botic manipulators. 

Application in Reinforcement Learning 
In robotic imitation learning, a robot should generate mo-
tion trajectories which are similar to demonstrated trajecto-
ries and the error mentioned above is not desired in the gen-
eration stage. 

Some researchers try to train robots to modify policy pa-
rameters in a regression model to fit a desired trajectory. 
Then at the generation stage, give a goal state in a task, ro-
bots can generate similar trajectories to achieve the task 
goal. At the learning stage, the evaluation of modeling is 
over the whole desired trajectory, but not at each timing 
step. Therefore, the policy updating at the learning state 
should be considered as a result of considering the accumu-
lated information over the whole desired trajectory. 

We use a general dynamic system as shown in equation 
(7) and rewrite here: 

� � � � � �� � � � � � � �    (23) 
The input � is described as a regression function: 

� � �
��          (24) 

where �
� is a regressor matrix, and �� is a parameter vector. 

During each trial, � is fixed. Only after each trial, the up-
dates are integrated and this vector can be updated. In adap-
tive control algorithms, the parameters are updated in the 
control process which may cause the timing lag error. In our 
method, the parameters are fixed to accumulate the error 
over the whole trajectory for robots to learn. This could 
help robots to understand the whole demonstration avoiding 
the timing lag error. 

We define a cost function as an integration of the rewards 
obtained over the generated trajectory. 

� � � � �� � ����
��

��

              (25) 
where �� is the state at the ending point of the trajectory, 
� �  is the reward,  �� is the starting time, and �� is the end-
ing time. � represents the trajectory starting from ��.  

Simply, we can define 
�
� � �� � ��

�
��� �            (26) 

where  �
� is an arbitrary reward function. Normally, it is the 

weighted square of the error between the desired trajectory 
(the demonstrated trajectory) and the generated trajectory. 

�
� � ��

�
��� �        (27) 

� �� � ����
���

�
���� �            (28) 

According to the updated law in equation (21): 
� � ���� � � ��

��

�

�
�
��              (29) 

where � � �
� � �� �, � �

� �

��� ���
, and � � �

�
. 
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The overall updates can be computed as the integration of 
update at each timing step over the generated trajectory: 

�� � ���� � � ��
��

�

�
�
�� ��

��

��

       (30) 
Then, we get 
�
��� � ���� � ���� � � ��

��

�

�
�
�� ��

��

��

 (31) 

Application in Parameterized Motor Primitives 
Learning 
In order to adaptively generate motion trajectories in similar 
but slightly different situations, we pick DMP as the basis 
for describing internal dynamics of motions.  As explained 
earlier, � modulates the system response. In our understand-
ing, � can also be considered as the controller input which 
modulates or drive the system response. 

In original DMP, � and � are predefined arbitrarily to 
ensure the over damping performance of the motion genera-
tion system. In this paper, we applied Adaptive Control to 
enable robots to learn the two parameters iteratively.  

Rewrite equation (1) and equation (2), and incorporate 
equation (16): 

� � �� � ��� � ��� � � �� �� � �      (32) 
By replacing � � � with �, we can obtain that: 

� � �� � ��� � � �� �� � �    (33) 
In order to apply adaptive control-based reinforcement 

learning for DMP, we construct the regressor matrix as: 
� �� �� � � �����            (34) 

The parameter vector is: 
� � ������ �       (35) 

In this equation,  
� � � �         (36) 

� �� � � ��         (37) 
� � � ���        (38) 

The controller is designed as: 
� � � � �� � �� � � �� � �� � � �� � � �� � � � � �     (39) 
We can obtain the system dynamics equation 

� � ��� � ��� � � �� �� � �     (40) 
Define  

� � �� � �� �� �� � �              (41) 

where � � �
� � �� �, � �

� �

��� ���
, and � � �

�
, and 

choose the Lyapunov Function  
� �� � � �

�
�� � � ���� �     (42) 

where � is a  positive definite matrix, and � is a solution to  
�
�
� � �� � ��            (43) 

The update law is: 
� � ����������              (44) 

Using the principle of reinforcement learning, at the end 
of each trial, �

��� could be computed as 
�
��� � ���� � ���������� ��

��

��

  (45) 
 Through trials, � can be updated iteratively. Then, given 
a new task goal, a motion trajectory could be generated us-
ing the controller defined by equation (1), (2), and (39). 

Experimental Results 
In order to validate our proposed algorithm, we designed 
two experiments in simulation and one experiment on a ro-
bot. We want to validate that the robot can learn the dy-
namics, i.e., the model parameters, and generate similar 
motion trajectories.  

The demonstrated motion trajectory used in Experiment 
1 and 2 is displayed in Figure 2. The spring-damper dy-
namics of equation (33) is determined by � and ��. If we 
rewrite left side of the equation (33) in S-domain, we can 
use linear system analysis method to find the dynamics. A 
standard 2-order linear system can be described as 

� � �

��
�

����������
�
           (46) 

The denominator of the � �  determines the dynamics 
of a system. An important feature is that � determine the 
damping type of the system. 

In order to avoid the damage caused by damping and to 
ensure that the response is fast enough to follow the de-
sired motion, normally, we want to construct a critical-
damping system. The weight matrix in equation (42) is de-
fined as a positive identity matrix �. The proportional and 
differential parameters are arbitrarily chosen as: 

�� � ���         (47) 

 
Figure 2 Demonstrated Motion Trajectory 
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�� � ��          (48) 
The transition matrix is:  

� �
� �

���� ���
        (49) 

After solving equation (43), we get 

� �

���

��

�

���

�

���

���

�����

       (50) 

Experiment 1 and 2 use the same parameter matrices in 
the learning processes as explained above. 

Experiment 1 (Simulation) 
The dynamics parameters are chosen as follows:  

� � ��          (51) 
� � ����         (52) 

Then the damping ratio is � � �. 
The initial estimation of the parameters are: 

�� � �          (53) 
�� � �          (54) 

Without learning and using the initial parameters, the 
generated motion trajectory using equation (1) is displayed 
in Figure 3-(a). The blue solid lines are the demonstrated 
motion trajectory and are also considered as desired motion 
trajectory, and the red dashed lines are generated motion 

trajectory. From Figure 3-(a), the generated motion trajec-
tory has large deviation from the desired motion trajectory, 
due to the fact that the parameters � and � in the controller 
are not the same as the parameters used in equation (1). Af-
ter learning, the generated motion trajectory is shown in 
Figure 3-(b), which is overlapped with the demonstrated 
motion trajectory. This means that the generated motion 
trajectory is similar to the demonstrated motion trajectory 
after learning. And the learned parameters are: 

�� � �������       (55) 
�� � ������        (56) 

The estimated parameters converge to the actual parame-
ters after 200 iterations. Theoretically, when � � �, the es-
timated parameters converge to the actual parameters. 

 
(a) 

 
(b) 

Figure 3 Generated Motion Trajectory in Experiment 1 

 
Figure 4 Estimated Parameters in Experiment 1 
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The error value is defined as the distance between the 
generated motion trajectory and the demonstrated motion 
trajectory. Mathematically, it is computed as:

� � ��� �
�
� � � � ��

��

��

          (57) 
Figure 5 displays the error values in iterations. As shown 

in Figure 5, the error value converges to zero after 200 it-
erations which reflect the robustness and rapid conver-
gence of our algorithm. Figure 4 and Figure 5 can be also 
considered as the learning curve in our experiments.  

After the parameters have been learned, they can be di-
rectly used in DMP to generate similar motions. Even with 
different initial positions and target positions, the dynamics 
of motion trajectories will be the same. 

Experiment 2 (Robotic Conducting)
We used this method to teach a robot to learn Conducting 
motion trajectory. Figure 6 displays a typical conducting 
trajectory and the learning results. From Figure 6, we can 
see that the robot successfully learned the Conducting be-
havior. The learning curve is similar to Figure 5.  

Discussion and Future Work 
From the experimental results, we can conclude that our 
algorithm is robust and the convergence speed of learning 
is fast. After 200 iterations, the learning of the parameters 
converges to the actual value of the parameters in the dy-
namic system we use. Meanwhile, the error values drops to 
zero at the same speed as the learning.  

However, the learning at the beginning is not the same 
as conventional learning algorithms. Especially, the learn-
ing curve for alpha has an overshoot at the beginning 
around iteration 100, which correspondingly causes the 
overshoot of error values on the learning curve. The reason 
for the overshoot is that the learning of the two parameters 
is separated since the matrix Q chosen in this paper is di-
agonal. The correlation between the two parameters is arbi-
trarily removed. Our future work is to find a method to de-

termine the correlation values, i.e. the off-diagonal num-
bers in the matrix.   
 As mentioned earlier, this method firstly determines the 
type of controller and then uses the iteratively estimated 
parameters in the dynamical system to adaptively update 
the controller, which is the basic idea of adaptive control. 
Through iterative learning, the learned model can enable 
robot to generate motion trajectories similar to demonstra-
tions. Compared to other reinforcement learning algo-
rithms applied in robotic imitation learning, this algorithm 
can largely save the time of learning. As shown in the ex-
perimental results, after 200 iterations, the estimated pa-
rameters converge to the actual values that we use in our 
dynamical systems. This method provides an extra solution 
to current robotic imitation learning research. 

Conclusion 
This paper proposes applying adaptive control method in 
reinforcement learning for robotic imitation learning. Ex-
perimental results given in this paper validate that the pro-
posed algorithm is robust and enable a robot to learn mo-
tions demonstrated by human teachers quickly and reliably. 
The proposed algorithm contributes to current robotic imi-
tation learning and reinforcement learning research com-
munity and provides an extra solution for robots to learn 
motion trajectories demonstrated by human teachers. 
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