
Applying Adaptive Control in Modeling Human Motion
Behaviors in Reinforcement Robotic Learning from Demonstrations

Huan Tan, Yang Zhao, and Balajee Kannan
GE Global Research, 1 Research Circle, Niskayuna, NY 12309, USA

huantan@ieee.org

Abstract

In this paper, we propose to use an adaptive control method
as the basis of a reinforcement learning algorithm for robot-
ic imitation learning. In the learning stage, robots use adap-
tive control method-based reinforcement learning algorithm
to learn the parameters of dynamical systems. In the genera-
tion stage, robots use the learned dynamic system parame-
ters and the pre-defined controller to drive the configuration
states of the robot to move along desired state trajectories.
One simulation experiment and one practical experiment on
a robot are carried out to validate the effectiveness of our
algorithm. The experimental results validate that the learn-
ing of the system parameters converges very fast and the
learning results can improve the system performance of
generating similar motion trajectories.

 Introduction
Robotic Imitation Learning has been considered as a kind
of power tools of transferring skills from humans to robots.
From Uchiyama’s experiment (Uchiyama 1978) in 1970s
and Atkeson’s trajectory learning experiment (Atkeson and
McIntyre 1986) in 1980s, researchers proposed various
methods for robots to learn behaviors (Argall et al. 2009),
especially the motion trajectories, from humans. Figure 1
displays the basic idea of robotic imitation learning which
is to model the knowledge or skills demonstrated by hu-
mans and to generate similar motion trajectories in similar
but slightly different situations. These methods could be
divided into two categories (Calinon, Guenter, and Billard
2007): one is to train robots to learn motion trajectories
(Ijspeert, Nakanishi, and Schaal 2003), and the other is to
train robots to learn behavior sequences (Dillmann, Kaiser,
and Ude 1995). Either method involves system modeling
or machine learning methods at the learning stage.

Some researchers believe that the offline learning meth-
ods could enable robots to generate similar motion trajecto-

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ries after generalizing motion primitives (Ijspeert, Nakani-
shi, and Schaal 2003) (Peters and Schaal 2006). While
some researchers consider it as a control problem for ro-
bots, which aims at driving configuration states of a robot
to follow the states on a desired configuration trajectory
(Arimoto 1990). The major difference between the two
types of algorithms is how to modify the configuration of a
robot. Conventionally, offline learning methods enable ro-
bots to have a precise mathematical model to describe the
desired motion dynamics, which use a few parameters ra-
ther than a large number of data points and save storage
space.
 In our research, we are interested in finding a control
method for robots to track the desired motion trajectories.
However, we do not know the internal dynamics of
demonstrated motion trajectories. If we can teach a robot to
learn the internal dynamics of a demonstrated motion tra-
jectory, the motions will be more precisely modeled and
generated. And we believe that the offline iteration learn-
ing could help robots learn the dynamics of the motion tra-
jectories in advance.
 In this paper, the motivation is to develop an offline al-
gorithm to enable a robot to learn the internal dynamics
feature of a demonstrated motion trajectory. Based on the
learned results, the robot can use a control algorithm to
generate control signals to drive the robot to follow the
configuration states of a demonstrated motion trajectory.

Figure 1 Imitation Learning Framework

The 2016 AAAI Fall Symposium Series:
Artificial Intelligence for Human-Robot Interaction

Technical Report FS-16-01

79

 The proposed method is largely based on the learning
algorithm we choose. Current learning algorithms are nor-
mally categorized into three types (Bishop 2006): super-
vised learning, unsupervised learning, and reinforcement
learning. Reinforcement Learning (RL) is widely applied
in robotic imitation learning (Peters and Schaal 2008). Us-
ing RL methods, robots obtain rewards at each timing step
or at the end of iterations and use such rewards to update
the decision making policies. In imitation learning, the
three types of algorithms are widely used in various do-
mains. In this paper, we proposed to apply an adaptive con-
trol method in reinforcement learning for robotic imitation
learning. Adaptive control (Astrom and Wittenmark 1994)
(Li 1990) is a popular control method which is applied in
dynamic systems with varying parameters. Upon the com-
mon feature in both adaptive control and the general robot-
ic imitation learning, we believe that this control method is
suitable for robots to improve policies through learning.
 The rest of this paper is organized as follows: Section II
reviews current research on robotic imitation learning; Sec-
tion III derives a reinforcement learning algorithm based
on adaptive control method; Section IV uses some experi-
mental examples to explain how to apply this method in
robotic imitation learning; Section V discusses the experi-
mental results proposes the future work; and Section VI
concludes this paper.

Related Work
A well accepted imitation learning framework can be de-
scribed as: what to imitate, how to imitate, who to imitate,
and when to imitate (Billard et al. 2007) (Calinon, Guenter,
and Billard 2007). There are lots of replicating methods of
generating motion trajectories the same as demonstrated
motion trajectories. Readers can refer to this article (Argall
et al. 2009) for more information. Adapting generation
methods are of more interest in robotics community since
it provides robots more flexible capability in various appli-
cation domains.
 Ijspeert proposed Dynamic Movement Primitives
(DMP) (Ijspeert, Nakanishi, and Schaal 2003), which is
considered as a tool for attractor landscape learning. A
one-dimensional DMP formulation could be represented
as:

� � � � � � � � � � � (1)
� � � (2)

where � is the goal state, � is the position on the generated
trajectory, � is the velocity, and � is a non-linear model. In
original DMP, � is a regression model, which uses the
weighted sum of basis functions to model the non-linear
part of the motions. In our understanding, � is a non-linear
regression model which modulates the system response.

 Calinon and Billard proposed using Lagrangian methods
(Calinon, Guenter, and Billard 2007) to minimize the dis-
tance between a demonstrated motion trajectory and gener-
ated motion trajectories in both the original data space and
the dimension-reduced data space, called latent space.
Adaptive methods used by Billard are also extended to
Stable Estimator of Dynamical Systems (SEDS) (Neumann
and Steil 2015), τ-SEDS (Khansari-Zadeh and Billard
2011), and Locally Modulated Dynamical systems
(LMDS) (Kronander, Khansari, and Billard 2015).
 In order to enable robot to learn policy parameters, e.g.,
the weights for � in equation (1) is learned through trials.
Reinforcement learning is widely utilized by robotics
community. Peters applied Reinforcement Leaning to teach
robots to learn policy parameters or motion primitives
though an iterative learning process (Peters and Schaal
2006). Thedorou proposed using optimal control for rein-
forcement learning applications (Theodorou, Buchli, and
Schaal 2010). The charm of applying Reinforcement
Learning is to provide a method for robots to find parame-
terized policies through trials. Other similar methods could
be found in Ude’s method (Ude 2010) of using Gaussian
Process to update policy parameters, Billard’s method
(Billard 2007) of using Gaussian Mixture Model (GMM)
to generalize demonstrations, etc.

Methodology

Background of Adaptive Control
Mechanical systems are generally described by nonlinear

equations where Lagrangian and Hamiltonian mechanics
are used to represent the behavior of mechanical system. A
system with � Degrees-Of-Freedom (DOFs) can be locally
represented by � configuration states and satisfies the fol-
lowing equation:

�

��

��

���
�

��

���
� � (3)

where � is Lagrangian function denoting the total energy of
the system:

� �� �� � � � �� � � � � � ����
�

��� (4)
�� � �� (5)

� �� � is the total kinetic energy, � � is the potential
energy, and �� is the input variable.

By defining:
� �� �� � � ��� � � � � � � � ��� (6)

and after some mathematical derivations using equation (3),
we could obtain:

� � � � � �� � � � � � � � (7)
where � � is the inner mas matrix, � �� � is related to
Coriolis and centrifugal matrix, and � � is the gravitation-
al torque/force.

� �� � � � � �

�

�

���� �

��
 (8)

80

� � �

�� �

��
 (9)

In some situations, we want to control this non-linear dy-
namical system to drive the state � to move along a desired
trajectory in a configuration space or other relevant spaces.
Using the known non-linear dynamics equation (7), we can
design many types of controllers to generate desired input �
to control the plant.

A typical usage of adaptive control in this situation is to
estimate the parameters in equation (7) and design a corre-
sponding controller.

A required trajectory is represented as �� � �� � �� ,
where �� � �� is the positions on a desired trajectory, and
�� and �� are velocities and accelerations.

A proportional-differential (PD) controller is designed
as:
� � � � �� � �� � � �� � �� � � �� � � �� � � �

� � (10)
where � � , � �� � , and � � are the estimates of � � ,
� �� � , and � � .

If the estimates are exactly the same as actual parameter
matrices, the closed loop dynamics is :

� � ��� � ��� � � (11)
By selecting �� and �� suitably, the error is reduced to

zero as time goes to infinity.
If the estimation is not perfect, the system dynamics is:
� � � � ��� � ��� � �� � � � � �� � � � � �

 (12)
where,

� � � � � �� � (13)
� �� � � � �� � � � �� � (14)
� � � � � � � � (15)

The left hand side of equation (7) could be also described
as:

� � � � � �� � � � � � � � �� �� � � (16)
where � �� �� � is a regressor matrix and � is an unknown
parameter vector.

Incorporating equation (7) (10) (13) (14) (15) (16), equa-
tion (11) could be written as:

� � ��� � ��� � � � ��
� �� �� � � (17)

Define
� � �� � �� � ��

� �� �� � � (18)

where � � �
� � �� �, � �

� �

��� ���
, and � � �

�
.

In order to make the error converge to zero, we choose a
Lyapunov function:

� �� � � �
�
�� � � ���� � (19)

where � is a positive definite matrix, and � is a solution to
�
�
� � �� � ��. By differentiating equation (19), we ob-

tain:
� �� � � � �

��� � � �� � � ��
� �� �� �

�

�
�
�� � �� (20)

If the update law is:
� � ���� � � ��

� �� �� �
�

�
�
�� (21)

� �� � � � �
��� � � � (22)

the system error converges to zero.
 This method is widely used in non-linear control of ro-
botic manipulators.

Application in Reinforcement Learning
In robotic imitation learning, a robot should generate mo-
tion trajectories which are similar to demonstrated trajecto-
ries and the error mentioned above is not desired in the gen-
eration stage.

Some researchers try to train robots to modify policy pa-
rameters in a regression model to fit a desired trajectory.
Then at the generation stage, give a goal state in a task, ro-
bots can generate similar trajectories to achieve the task
goal. At the learning stage, the evaluation of modeling is
over the whole desired trajectory, but not at each timing
step. Therefore, the policy updating at the learning state
should be considered as a result of considering the accumu-
lated information over the whole desired trajectory.

We use a general dynamic system as shown in equation
(7) and rewrite here:

� � � � � �� � � � � � � � (23)
The input � is described as a regression function:

� � �
�� (24)

where �
� is a regressor matrix, and �� is a parameter vector.

During each trial, � is fixed. Only after each trial, the up-
dates are integrated and this vector can be updated. In adap-
tive control algorithms, the parameters are updated in the
control process which may cause the timing lag error. In our
method, the parameters are fixed to accumulate the error
over the whole trajectory for robots to learn. This could
help robots to understand the whole demonstration avoiding
the timing lag error.

We define a cost function as an integration of the rewards
obtained over the generated trajectory.

� � � � �� � ����
��

��

 (25)
where �� is the state at the ending point of the trajectory,
� � is the reward, �� is the starting time, and �� is the end-
ing time. � represents the trajectory starting from ��.

Simply, we can define
�
� � �� � ��

�
��� � (26)

where �
� is an arbitrary reward function. Normally, it is the

weighted square of the error between the desired trajectory
(the demonstrated trajectory) and the generated trajectory.

�
� � ��

�
��� � (27)

� �� � ����
���

�
���� � (28)

According to the updated law in equation (21):
� � ���� � � ��

��

�

�
�
�� (29)

where � � �
� � �� �, � �

� �

��� ���
, and � � �

�
.

81

The overall updates can be computed as the integration of
update at each timing step over the generated trajectory:

�� � ���� � � ��
��

�

�
�
�� ��

��

��

 (30)
Then, we get
�
��� � ���� � ���� � � ��

��

�

�
�
�� ��

��

��

 (31)

Application in Parameterized Motor Primitives
Learning
In order to adaptively generate motion trajectories in similar
but slightly different situations, we pick DMP as the basis
for describing internal dynamics of motions. As explained
earlier, � modulates the system response. In our understand-
ing, � can also be considered as the controller input which
modulates or drive the system response.

In original DMP, � and � are predefined arbitrarily to
ensure the over damping performance of the motion genera-
tion system. In this paper, we applied Adaptive Control to
enable robots to learn the two parameters iteratively.

Rewrite equation (1) and equation (2), and incorporate
equation (16):

� � �� � ��� � ��� � � �� �� � � (32)
By replacing � � � with �, we can obtain that:

� � �� � ��� � � �� �� � � (33)
In order to apply adaptive control-based reinforcement

learning for DMP, we construct the regressor matrix as:
� �� �� � � ����� (34)

The parameter vector is:
� � ������ � (35)

In this equation,
� � � � (36)

� �� � � �� (37)
� � � ��� (38)

The controller is designed as:
� � � � �� � �� � � �� � �� � � �� � � �� � � � � � (39)
We can obtain the system dynamics equation

� � ��� � ��� � � �� �� � � (40)
Define

� � �� � �� �� �� � � (41)

where � � �
� � �� �, � �

� �

��� ���
, and � � �

�
, and

choose the Lyapunov Function
� �� � � �

�
�� � � ���� � (42)

where � is a positive definite matrix, and � is a solution to
�
�
� � �� � �� (43)

The update law is:
� � ���������� (44)

Using the principle of reinforcement learning, at the end
of each trial, �

��� could be computed as
�
��� � ���� � ���������� ��

��

��

 (45)
 Through trials, � can be updated iteratively. Then, given
a new task goal, a motion trajectory could be generated us-
ing the controller defined by equation (1), (2), and (39).

Experimental Results
In order to validate our proposed algorithm, we designed
two experiments in simulation and one experiment on a ro-
bot. We want to validate that the robot can learn the dy-
namics, i.e., the model parameters, and generate similar
motion trajectories.

The demonstrated motion trajectory used in Experiment
1 and 2 is displayed in Figure 2. The spring-damper dy-
namics of equation (33) is determined by � and ��. If we
rewrite left side of the equation (33) in S-domain, we can
use linear system analysis method to find the dynamics. A
standard 2-order linear system can be described as

� � �

��
�

����������
�
 (46)

The denominator of the � � determines the dynamics
of a system. An important feature is that � determine the
damping type of the system.

In order to avoid the damage caused by damping and to
ensure that the response is fast enough to follow the de-
sired motion, normally, we want to construct a critical-
damping system. The weight matrix in equation (42) is de-
fined as a positive identity matrix �. The proportional and
differential parameters are arbitrarily chosen as:

�� � ��� (47)

Figure 2 Demonstrated Motion Trajectory

82

�� � �� (48)
The transition matrix is:

� �
� �

���� ���
 (49)

After solving equation (43), we get

� �

���

��

�

���

�

���

���

�����

 (50)

Experiment 1 and 2 use the same parameter matrices in
the learning processes as explained above.

Experiment 1 (Simulation)
The dynamics parameters are chosen as follows:

� � �� (51)
� � ���� (52)

Then the damping ratio is � � �.
The initial estimation of the parameters are:

�� � � (53)
�� � � (54)

Without learning and using the initial parameters, the
generated motion trajectory using equation (1) is displayed
in Figure 3-(a). The blue solid lines are the demonstrated
motion trajectory and are also considered as desired motion
trajectory, and the red dashed lines are generated motion

trajectory. From Figure 3-(a), the generated motion trajec-
tory has large deviation from the desired motion trajectory,
due to the fact that the parameters � and � in the controller
are not the same as the parameters used in equation (1). Af-
ter learning, the generated motion trajectory is shown in
Figure 3-(b), which is overlapped with the demonstrated
motion trajectory. This means that the generated motion
trajectory is similar to the demonstrated motion trajectory
after learning. And the learned parameters are:

�� � ������� (55)
�� � ������ (56)

The estimated parameters converge to the actual parame-
ters after 200 iterations. Theoretically, when � � �, the es-
timated parameters converge to the actual parameters.

(a)

(b)

Figure 3 Generated Motion Trajectory in Experiment 1

Figure 4 Estimated Parameters in Experiment 1

83

The error value is defined as the distance between the
generated motion trajectory and the demonstrated motion
trajectory. Mathematically, it is computed as:

� � ��� �
�
� � � � ��

��

��

 (57)
Figure 5 displays the error values in iterations. As shown

in Figure 5, the error value converges to zero after 200 it-
erations which reflect the robustness and rapid conver-
gence of our algorithm. Figure 4 and Figure 5 can be also
considered as the learning curve in our experiments.

After the parameters have been learned, they can be di-
rectly used in DMP to generate similar motions. Even with
different initial positions and target positions, the dynamics
of motion trajectories will be the same.

Experiment 2 (Robotic Conducting)
We used this method to teach a robot to learn Conducting
motion trajectory. Figure 6 displays a typical conducting
trajectory and the learning results. From Figure 6, we can
see that the robot successfully learned the Conducting be-
havior. The learning curve is similar to Figure 5.

Discussion and Future Work
From the experimental results, we can conclude that our
algorithm is robust and the convergence speed of learning
is fast. After 200 iterations, the learning of the parameters
converges to the actual value of the parameters in the dy-
namic system we use. Meanwhile, the error values drops to
zero at the same speed as the learning.

However, the learning at the beginning is not the same
as conventional learning algorithms. Especially, the learn-
ing curve for alpha has an overshoot at the beginning
around iteration 100, which correspondingly causes the
overshoot of error values on the learning curve. The reason
for the overshoot is that the learning of the two parameters
is separated since the matrix Q chosen in this paper is di-
agonal. The correlation between the two parameters is arbi-
trarily removed. Our future work is to find a method to de-

termine the correlation values, i.e. the off-diagonal num-
bers in the matrix.
 As mentioned earlier, this method firstly determines the
type of controller and then uses the iteratively estimated
parameters in the dynamical system to adaptively update
the controller, which is the basic idea of adaptive control.
Through iterative learning, the learned model can enable
robot to generate motion trajectories similar to demonstra-
tions. Compared to other reinforcement learning algo-
rithms applied in robotic imitation learning, this algorithm
can largely save the time of learning. As shown in the ex-
perimental results, after 200 iterations, the estimated pa-
rameters converge to the actual values that we use in our
dynamical systems. This method provides an extra solution
to current robotic imitation learning research.

Conclusion
This paper proposes applying adaptive control method in
reinforcement learning for robotic imitation learning. Ex-
perimental results given in this paper validate that the pro-
posed algorithm is robust and enable a robot to learn mo-
tions demonstrated by human teachers quickly and reliably.
The proposed algorithm contributes to current robotic imi-
tation learning and reinforcement learning research com-
munity and provides an extra solution for robots to learn
motion trajectories demonstrated by human teachers.

References
Argall, B. Chernova, S, Veloso, M, and Browning, B. 2009. A
Survey of Robot Learning from Demonstration. Robotics and Au-
tonomous Systems 57: 469-483.
Arimoto, S. 1990. Robustness of learning control for robot ma-
nipulators. In Proceedings of 1990 IEEE International Confer-
ence on Robotics and Automation: 1528-1533. Cincinnati , Ohio,
USA. IEEE Press.
Astrom, K. J. and Wittenmark, B. 1994. Adaptive control. Addi-
son-Wesley Longman Publishing Co., Inc. Boston, MA, USA.
Atkeson, C. and McIntyre, J. 1986. Robot Trajectory Learning
Through Practice. In Proceedings of 1986 IEEE Conference on

Figure 5 Error Values of Experiment 1

Figure 6 Learning Result of Experiment 2

84

Robotics and Automation, 1737-1742, San Francisco, California,
USA. IEEE Press.
Billard, A. Calinon, S. Dillmann, R. and Schaal S. 2007. Robot
programming by demonstration, in Handbook of robotics, B. Si-
ciliano and O. Khatib, Eds., ed. Springer, New York, NY, USA.
Bishop, C. 2006. Pattern Recognition and Machine Learning.
New York, NY: Springer.
Calinon, S., Guenter, F. and Billard, A. 2007. On learning, rep re-
senting, and generalizing a task in a humanoid robot. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 37: 286-
298.
Dillmann, R. Kaiser, M. and Ude, A. 1995. Acquisition of ele-
mentary robot skills from human demonstration. In Proceedings
of 1995 International Symposium on Intelligent Robotic System:
185-192. Pittsburgh, Pennsylvania, USA. IEEE Press.
Ijspeert, A. Nakanishi, J. and Schaal, S. 2003. Learning attractor
landscapes for learning motor primitives. Advances in Neural In-
formation Processing Systems 15: 1523-1530.
Khansari-Zadeh, S. and Billard, A. 2011. Learning stable nonlin-
ear dynamical systems with gaussian mixture models. IEEE
Transactions on Robotics 27: 943–957.
Kronander, K. Khansari, M. and Billard. 2015. A. Incremental
motion learning with locally modulated dynamical systems. Ro-
botics and Autonomous Systems 70: 52–62.
Li, W. 1990. Adaptive control of robot motion, Ph.D Dissertation,
Electrical Engineering and Computer Science, Massachusetts In-
stitute of Technology, Cambridge, MA, USA.
Neumann, K. and Steil, J.. 2015. Learning robot motions with
stable dynamical systems under diffeomorphic transformations.
Robotics and Autonomous Systems 70: 1–15.
Peters, J. and Schaal, S. 2006. Reinforcement learning for param-
eterized motor primitives. In Proceedings of 2006 International
Joint Conference on Neural Networks: 73-80. Vancouver, BC,
Canada. IEEE Press.
Peters, J. and Schaal, S.. 2008. Learning to control in operational
space. The International Journal of Robotics Rese arch 27: 197.
Theodorou, E. Buchli, J. and Schaal S. 2010. A generalized path
integral control approach to reinforcement learning. The Journal
of Machine Learning Research 11: 3137-3181.
Uchiyama, M. 1978. Formation of High Speed Motion Pattern of
Mechanical Arm by Trial. Transactions of Society of Instrument
and Control Engineers 19: 706-712.
Ude, A. Gams, A. Asfour, T. and Morimoto J. 2010. Task-
Specific Generalization of Discrete and Periodic Dynamic
Movement Primitives. IEEE Transactions on Robotics 26: 800-
815.

85

