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ABSTRACT

Existing soil moisture sensing methods require either plug-
ging probes into soil or burying sensor nodes or aluminum
plate in soil. These methods either have mobility and mainte-
nance limitations or have risks of battery leakage. To address
these issues, we propose to build a soil moisture sensing
dataset using millimeter-wave radar for non-invasive and
non-contact moisture sensing of shallow soil. Our millimeter-
wave radar soil moisture dataset includes 20 different mois-
ture levels, filling the gap in mmWave radar-based soil mois-
ture sensing datasets. Furthermore, we propose a mm-SoilNet
model, which uses the data-driven approach to extract soil
moisture features from radar data to estimate the volumetric
water content of soil. Our initial experimental results show
that the system achieves a mean absolute error of 5.506%.

CCS CONCEPTS

« Computer systems organization — Sensors and actu-
ators.
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1 INTRODUCTION

Despite unfavorable climate conditions, greenhouses provide
an optimal growth environment for plants, playing a crucial
role in regions affected by climate change. Real-time, accu-
rate, and large-scale soil moisture remote sensing plays a key
role in intelligent irrigation for agriculture. Precise real-time
soil moisture sensing enables intelligent irrigation systems
to dynamically optimize irrigation schedules to meet the
specific needs of the crops being cultivated, ultimately con-
tributing to improved crop yields[12]. Accurate soil moisture
information can also provide valuable insights for green-
house management, plant breeding and other applications.
Current soil moisture sensors can be categorized into con-
tact sensors and non-contact sensors. Contact sensor-based
methods typically require placing sensor probes in soil to
measure moisture, such as electricity resistance sensors[13],
tensiometers, and radioactive sensors[5]. This kind of meth-
ods have several limitations. First, they rely on various pe-
ripheral devices, such as data loggers and communication
modules, to store and transmit the collected sensor data.
Installing and integrating these devices into the entire mois-
ture sensing system often requires specialized knowledge
and significant effort. Second, a typical greenhouse may cul-
tivate from ten thousand to one million plants in pots, fre-
quently necessitating soil moisture measurement in each
pot. Ideally, each pot would require a soil moisture sensor
to monitor its moisture level. However, most existing sen-
sors are expensive, making the overall cost prohibitive. In
addition, it is also labor-intensive for maintaining such a
large-scale sensor network, including tasks like battery re-
placement and faulty device replacement. On the other hand,
non-contact sensor-based techniques estimate soil moisture
using radio frequency (RF) signals, eliminating the need to
install the aforementioned specialized sensors in the soil.
However, existing RF-based techniques also have their own
limitations. Some approaches require battery-powered de-
vices to be buried in the soil, such as WiFi nodes[3, 6], LoRa
nodes[10], and radar backscatter tags[9]. These methods
carry the risk of soil contamination due to battery leakage
and incur significant maintenance costs for battery and de-
vice replacement. Additionally, due to the size constraints
of flowerpots, it is difficult to embed antenna arrays within
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the pots for soil moisture sensing.The methods proposed
by Chen W. et al.[2] and Ding R. et al.[4], require placing a
metal plate beneath the soil surface. Although this method
avoids the risk of battery leakage, it necessitates maintain-
ing a constant distance between the metal plate and the soil
surface, meaning the plate must be recalibrated with each
planting cycle, significantly increasing the labor involved
in deployment and maintenance. The method proposed by
Jiao W. et al. [8]embeds WiFi tags in the soil to predict soil
moisture based on the frequency response of the tag res-
onators. Wang ]J. et al. [14]attach RFID tags to flowerpots
and predict soil moisture by reading their Differential Min-
imum Response Threshold (DMRT). Although these tags
do not require batteries, a tag must be placed on each pot.
In a greenhouse environment, deploying and maintaining
tags for tens of thousands of pots would demand substantial
manual labor.In contrast, remote sensing techniques offer a
non-invasive method to sense soil moisture in large-scale
areas. This technology detects soil moisture by capturing
images from the optical, thermal, and microwave regions of
the electromagnetic spectrum via satellites or aircraft. How-
ever, this method suffers from low measurement accuracy,
low spatial resolution, and is challenging to apply to indoor
greenhouse environments[11].

For soil moisture sensing in an indoor environment, such
as greenhouse, we propose to build a soil moisture sens-
ing dataset using Frequency Modulated Continuous Wave
(FMCW) mmWave radar to enable data-driven non-contact
and non-invasive soil moisture sensing. Our study is moti-
vated by the following two considerations. First, mmWave
radar is already used in many smart facility applications,
such as occupancy detection, human activity recognition,
with commercial-off-the-shelf products installed at various
indoor environments [1]. Thus, we can just use existing hard-
ware to perform soil sensing without adding more sensors.
Second, a data-driven approach can extract soil moisture
information from the reflected signals of mmWave radar,
without the need to embed sensor nodes or metal plates in
the soil. Thus, it can facilitate greenhouse management and
significantly lower the deployment and maintenance costs
of the system. To this end, we have collected mmWave radar
data for 20 different soil moisture levels at two different in-
door environments. We develop a neural network model to
show feasibility of the data-driven approach to soil moisture
sensing using our dataset. Note that different environments
have different multipath effects and thus would result in
different performance. Thus, we plan to investigate domain
adaptation methods to extract domain-invariant features for
soil moisture sensing in the future. This paper makes the
following contributions:

e We build a soil moisture dataset based on millimeter-wave
radar, which includes soil measurements with 20 different
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moisture levels, addressing the lack of publicly available
datasets in this domain.

o We design and implement a data-driven soil moisture sens-
ing system called mm-SoilNet, which utilizes FMCW radar
signals to predict soil moisture without the need to place
sensor nodes or metal plates in the soil.

2 EXPERIMENTS AND DATASET

2.1 Data acquisition system

We use the IWR1843 and DCA1000EVM evaluation mod-
ules to collect millimeter-wave radar data. The IWR1843 is
a single-chip radar sensor evaluation module operating in
the 76GHz to 81GHz range, produced by Texas Instruments,
and features three transmit antennas and four receive anten-
nas. The DCA1000EVM board captures raw ADC data from
the IWR1843[7]. We use the YGC-SM soil moisture sensor
to collect moisture data from five locations within the soil,
averaging these values to serve as the Ground Truth for soil
moisture.

2.2 Dataset

Our dataset contains the soil moisture level measurements
from the mmWave radar device mentioned above. Soil mois-
ture level refers to the Volumetric Water Content (VWC),
denoted as 6, which is defined as the ratio of the volume of
water to the volume of wet soil:

6 — Vwater (1)
Vietsoil

The dataset comprises soil samples with 20 different mois-
ture levels, ranging from 6.20% to 43.82%, with intervals
of approximately 2%, labeled as Soil 1 to Soil 20. We col-
lected mmWave radar datasets in two different environments,
specifically two distinct conference rooms, with variations
in chair arrangements and data collection locations. All ex-
perimental results presented in the following sections were
conducted using the dataset from the first environment. First,
we describe the data collection process in the first environ-
ment. As shown in Figure 1, during data collection, the radar
development board was mounted on a stand fixed to a small
lift platform. By adjusting the height of platform and the
rotation angle of the stand, we could control the distance
between the radar board and the soil surface, as well as the
tilt angle of the radar board, thereby enriching the dataset.
The transmit and receive signals of the radar board were
controlled using the mmWave Studio software.For each type
of soil, 128 radar frames are collected, with each frame con-
taining 32 chirps and 384 ADC sampling points. The data is
stored in a bin file. In the bin file names, the first number after
“data” represents the soil moisture level, labeled as 1 to 20. In
the bin file names, the second number after "data" represents



the height of the radar development board above the soil sur-
face, measured in centimeters, specifically 16 cm, 20 cm, and
24 cm. The data collection in the second environment was
similar to the first. Additionally, we performed data collec-
tion in a dynamic environment (with human movement near
the soil) to study the impact of dynamic multipath effects
on radar signals for future research. The dataset has been
uploaded to Zenodo, and more details can be found here
https://doi.org/10.5281/zenodo.13889266.

’-—.______.d--

Figure 1: Schematic diagram of the experimental setup.

3 DATA ANALYSIS AND DISCUSSION

3.1 Data Analysis and Results

A single sample (chirp) has dimensions of 4x384, where 4
represents the antenna dimension and 384 is the number
of ADC sampling points. As shown in Figure 2, the figure
presents the results of the radar signals from soils with two
different moisture levels after performing Range FFT. Given
that the radar’s detection range is approximately 15 meters,
we applied a filtering process to the signal. Specifically, after
performing FFT along the sampling point dimension, we
extracted only the frequency bands near the soil surface. We
believe this helps the model focus on soil moisture-related
information and reduces the impact of multipath effects and
environmental noise. After the extraction, the sample dimen-
sions are reduced to 4x24, shrinking by a factor of 16, which
significantly reduces computational complexity.

In the experimental design of this study, two soil samples
with different moisture levels (excluding the 1st and 20th
levels) are randomly selected as the test set, while the re-
maining 18 soil samples are used as the training set. Ten-fold
cross-validation is performed, and the Mean Absolute Error
(MAE), i.e., the absolute difference between the predicted
and true values, is computed for each estimation. The fi-
nal result is obtained by averaging these MAE values. To
achieve fine-grained soil moisture detection, we designed a
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Figure 2: A single sample undergoes Range FFT. VWC
refers to volumetric water content, which is the ratio
of the volume of water to the volume of wet soil. The
detection range of the radar is approximately 15 me-
ters; for simplicity, only the Range FFT results within
2 meters are presented here.
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Figure 3: The architecture of the mm-SoilNet

novel neural network called mm-SoilNet. As shown in Fig-
ure 3, mm-SoilNet first applies a 1x3 convolutional kernel
for large-scale feature extraction from the input data, with
a max pooling layer used to extract salient features. Then,
mm-SoilNet employs three different sizes of convolutional
kernels to capture signal features of soil samples at varying
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scales. This multi-scale feature extraction prevents the loss
of critical information and simplifies the model. The features
extracted at different scales are then aggregated and fused,
followed by flattening and feeding into two fully connected
layers to predict soil moisture content. We use mean squared
error as the loss function to train the model.

Table 1 compares the performance of our model, mm-
SoilNet, with other machine learning algorithms. The left
side of the table lists different soil moisture detection algo-
rithms, the middle column shows the input sample dimen-
sions, and the right column provides the average MAE. As
can be seen from the table, our model exhibits the best pre-
dictive performance, with an average MAE of 5.506%, which
represents an improvement of approximately 2% over other
methods. Additionally, we compare the effect of filtering
the input data on model performance. Without filtering, the
input data includes all frequency bands, with dimensions
of 4x384. The table shows that the average MAE difference
between the two processing methods is minimal, indicating
that the extracted frequency bands contain most of the rele-
vant information about soil moisture and play a crucial role
in the prediction accuracy of the model.

Table 1: Comparison of Different Algorithms

Algorithm Dimension MAE

SVM 4x384 7.906%

SVM + filtering 4x24 7.312%
MLP 4x384 7.280%

MLP + filtering 4x24 7.620%
mm-SoilNet 4x384 5.556%
mm-SoilNet + filtering 4x24 5.506%

3.2 Discussion and Future work

Our method achieves a mean absolute error of approximately
5.5%, which, while comparable to the accuracy level of typi-
cal commercial soil moisture sensors, still leaves significant
room for improvement. Additionally, millimeter-wave radar
has limited penetration capability, only allowing for the de-
tection of shallow soil moisture. Therefore, our method is
more suitable for applications in smart home or greenhouse
scenarios for monitoring soil moisture within potted plants.
Moreover, extracting fine-grained features related to soil
moisture from radar signals in the presence of complicated
environmental noise and multipath effects remains a major
challenge. Currently, our experiments have been conducted
in a single, static environment. In the future, we plan to
carry out more experiments in complicated and dynamic
environments to investigate the robustness of our method
to environmental variations.
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4 CONCLUSION

In this paper, we build a millimeter-wave radar-based soil
moisture dataset, comprising 20 different soil moisture levels,
addressing the lack of millimeter-wave radar datasets in this
field. Additionally, we propose a data-driven soil moisture
prediction model that extracts features related to soil mois-
ture from a large amount of millimeter-wave radar data to
estimate the volumetric water content of the soil. The system
achieves a mean absolute error of 5.506%.
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