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ABSTRACT

We present a system work combining visual cameras and wireless
sensors for human occupancy detection and activity recognition.
We describe our testbed system, data collected from a human sub-
ject study, observations from long-term occupancy experiments,
and preliminary analytical results. We apply machine learning al-
gorithms to the human activity recognition data, and identify chal-
lenges in applying the state-of-the-art deep learning techniques
to wireless sensing of human activity. We find that packet loss
due to wireless interference has a significant effect on time series
classification. We also find that the convolutional neural networks
significantly outperforms the conventional support vector machine
method, but further experiments need to be performed to inves-
tigate environment-independent classification and the overfitting
issue. Finally, we discuss future research topics that can use our
testbed of wireless sensors and visual cameras to automate data
labeling in deep learning model training.

CCS CONCEPTS

+ Computing methodologies — Supervised learning by clas-
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1 INTRODUCTION

Occupancy sensing and human activity recognition is important
in many applications, such as security, healthcare care, and smart
facilities. For example, detection of empty beds and rooms can in-
crease asset utilization and speed up hospital workflow [12]. Human

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DATA’19 °19, November 10, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6993-0/19/11...$15.00
https://doi.org/10.1145/3359427.3361911

activity recognition can provide context information for prompt
decision making and operation in hospitals [11]. In our pressure
ulcer prevention and care application, patient activity data is critical
in analyzing treatment progress for better treatment and care [1].

There are different sensing techniques for occupancy and hu-
man activity monitoring. Wearable technique recently becomes a
popular way of monitoring people’s activity [6], but it requires user
cooperation, and wearable sensors need to be attached to the hu-
man body, which may cause discomfort to users. Computer vision
is also a widely-used technique and it can monitor human activity
in a non-cooperative way. However, visual cameras have privacy
issues that limit its applicability in many scenarios. As wireless
devices are becoming pervasive in recent years, wireless sensor
becomes a cost-effective and promising sensing modality for many
internet of things (IoT) applications. For example, [14] claims that
they can use radio frequency (RF) sensors to estimate human pose
accurately through walls. [13] uses channel state information (CSI)
from IEEE 802.11 radio chips to perform device-free human activity
recognition. In addition, [16] uses Doppler sensors and received
signal strength (RSS) measurements to detect occupancy and clas-
sify human activity. In this work, we build a sensing system with
cameras and two types of wireless sensors to detect occupancy and
classify human activities in a non-cooperative way.

Sensing and perception in a dynamic environment is generally
a challenging problem. For occupancy sensing and activity recog-
nition, changes in lighting condition affect the performance of
camera-based systems, while RF-based systems are sensitive to
the multi-path effect. Multi-modal sensing provides a way to ex-
plore the complimentary nature of multiple sensors to achieve
high performance. In this work, we demonstrate research effort
in this direction. Specifically, we build a multi-modal sensing sys-
tem by integrating three subsystems: visual tracking system with
RGB-D cameras [3], Doppler system with Doppler motion sen-
sors [16], and RF sensor network with IEEE 802.15.4 radio sen-
sors [9]. We perform long-term occupancy sensing experiments
and short-term human activity recognition experiments during a
three-year human subject study. We present data collected from
the study and preliminary analytical results. While various signal
processing and machine learning methods can be applied to the
dataset and explore different perspectives of the data, we start our
analytical work applying deep learning-based and feature-based
classification algorithms on the Doppler human activity data. We
find that the convolutional neural networks (CNN) significantly
outperforms the support vector machine (SVM) method. We also
describe observations and challenges from the experiments. For
example, the wireless interference problem causes packet loss to
the RSS data, which presents a challenge to robust human activity
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(a) RGB image

(b) Depth image

Figure 1: RGB (a) and Depth (b) images from the camera tracking system.

recognition. Finally, we discuss future research topics to further use
our dataset and testbed system. The dataset is published on zenodo:
https://doi.org/10.5281/zenodo.3454785. We encourage researchers
to test their ideas and methods on this dataset.

To summarize, the contribution of this paper includes: 1) integra-
tion of a multi-modal sensing system, 2) human subject experiments
and data collection, 3) application of CNN on the Doppler human
activity data, 4) observations from experiments for future research.

2 SYSTEMS AND EXPERIMENTS

We develop a hybrid wireless [16] and computer vision (CV) sys-
tem [3] as the testbed and collect four types of sensor data: RGB
image, Depth image, Doppler and RSS. Figures 1 and 2 show data ex-
amples from experiments of our human subject study (E&I #14053).
We also deploy a Vicon motion capturing system so that we can
record the ground-truth of the human subject location and activity.
We describe the testbed system and experiments next.
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Figure 2: Doppler and RSS measurements from the wireless
sensing system.

2.1 Testbed system

The CV system is composed of two Kinect cameras deployed at two
corners of a room ceiling to cover the scene of the room with RGB

and depth images, as shown in Figure 1. The CV system is able to
track multiple people with cameras calibrated at a specific environ-
ment [3]. The wireless sensing system includes two types of sensors:
a Doppler motion sensor [16] and an RF sensor network [10]. The
Doppler sensor is a low-cost dual Doppler sensor modified from a
commercial-off-the-shelf range-controlled radar, which operates
at 5.8 GHz with two directional antennas [16]. The RF network
uses four IEEE 802.15.4 radio nodes (CC2531 from TI) to create a
mesh network to measure the RSS between each pair of radio nodes
operating on 16 frequency channels at 2.4 GHz. This low-power
wireless network is capable of locating a person’s location and even
estimating the person’s respiration rate [10].

A computer with data acquisition software is used to stream
video from cameras and record each individual frame, while the
data acquisition of the Doppler and RF network is implemented on
a BeagleBone embedded computer. The Doppler analog signal is
fed into the analog-to-digital converter (ADC) of the BeagleBone
board, to which a wireless base station is also connected, to collect
the RSS measurements from the RF network. The sampling rates of
Doppler and RF sensors are set to be 10 Hz and 3.3 Hz, respectively,
by the firmware on the embedded computer. A snapshot of the
Doppler and RSS time series is shown in Figure 2.

2.2 Experiments

We deploy the testbed system described above in a 5.5m by 7.5m
room. As shown in the experimental layout in Figure 3, two Kinect
cameras are deployed at two diagonal corners of the room ceiling
to obtain a full room coverage. The dual Doppler sensor is deployed
on a ceiling-mounted rail above the bed with one antenna facing
the bed and the other antenna facing the room. Four radio nodes
are placed at four corners to form a wireless network.

We have performed two types of experiments: long-term oc-
cupancy experiment and short-term activity experiment. For the
occupancy experiment, the purpose was to detect if the room is
occupied or not, and data was collected with different time dura-
tion from one hour to two days. For the activity experiment, we
recruited human subjects to perform 42 trials of four activities (each
one with two minutes duration): (1) walking in a room (10 trials),
(2) sitting in a chair (10 trials), (3) lying on a bed (12 trials), and
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Figure 3: Experimental layout.

(4) body turning on a bed (10 trials). For the walking activity, the
human subjects walk along different paths at different locations in
the room. For the sitting activity, the location of the chair is fixed,
as shown in Figure 3. For the lying on bed activity, we ask human
subjects to breathe normally on bed with three orientations facing
upwards, right and left. Finally, for the turning on bed case, human
subjects turn their bodies from one side to the other on bed with
random time intervals. We also recorded two-minute data of the
empty room case before and after each human subject trial.

3 DATA ANALYTICS AND CHALLENGES

We analyze data collected from the long-term and short-term exper-
iments, apply machine learning methods, and present our findings
and challenges in this section.

3.1 Analysis of Human Activity Data

For the short-term human activity data, we use the Doppler time se-
ries data as the example to demonstrate our data analysis approach.
All the Doppler data from 42 trials are split into 21 training cases
and 21 testing cases, with 1200 samples (2 minutes) in each trial.
Using a moving window with a length of 256 samples, we obtained
19845 windowed-samples for training and testing, respectively. We
describe the machine learning methods and evaluation results next.

3.1.1 Methods and Results. The deep convolutional neural net-
works (CNN) are shown to achieve the state-of-the-art performance
for both 1-D time series and 2-D image classification [7], thus we
apply the CNN on the Doppler time series. We construct two convo-
lutional layers with the rectified linear unit (ReLU) as the activation
function, and a fully connected layer with the softmax function be-
fore the output layer. The overall architecture of the CNN network
is shown in Figure 4. Note that we use a moving window over the
time series to generate a large training dataset. The window size
should be chosen based on the sampling rate of the sensing system
to capture the temporal correlation and features of the time series
data. We implement the CNN network using the Keras APIs, and
more details of the CNN implementation can be found in [15].

We also use a conventional machine learning method, support
vector machine (SVM) with a radial basis function kernel. We choose
hand crafted features, such as peak frequency of the Doppler power
spectral density, the variance of the time series, as described in
[16]. Due to insufficient data in the sitting in a chair experiment,
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Figure 4: Architecture of CNN networks for human activity
recognition.

we perform the CNN and SVM classification and comparison on
the following four classes: walking in a room, lying on a bed, body
turning on a bed, and empty room. The Doppler time series data for
these classes are shown in Figure 5.

1640 —— Empty 1640 — Lying
1620 1620

1600 1600

1580 1580

1560 1560

1540 1540

1520 1520

15000 200 400 600 800 1000 1200 15000 200 400 600 800 1000 1200

Sample Index Sample Index

(a) Empty room (b) Lying on bed
2000 T
1640 —— Walking —— Turning
1620 1800
1600
1600
1580
1560 1400
1540
1200
1520
1500+ 1000
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Sample Index Sample Index

(c) Walking in room (d) Turning on bed
Figure 5: Doppler time series for four classes (a) empty room,
(b) lying on bed, (c) walking in room and (d) turning on bed.

Finally, we evaluate the performance of the CNN and SVM clas-
sifiers with two evaluation methods: trial-based evaluation and
window-based evaluation. For the trial-based evaluation, we per-
form evaluation for 21 testing trials. That is, we have one classifica-
tion result for each of the two-minute (1200 samples) testing trials.
For the window-based evaluation, the classifiers are evaluated on all
19845 testing samples. In another word, we have one classification
result for each time window with 256 samples. Tables 1 and 2 show
the confusion matrices of the CNN-based classifier from these two
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Empty | Lying | Turning | Walking
Empty 5 0 0 0
Lying 0 6 0 0
Turning 0 0 5 0
Walking 1 0 0 4

Table 1: Confusion matrix from trial-based evaluation.

Empty | Lying | Turning | Walking
Empty 4595 0 0 130
Lying 0 5288 266 116
Turning 0 106 4298 321
Walking | 532 75 0 4118

Table 2: Confusion matrix from window-based evaluation.

evaluation methods. We see that only one trial from 21 trials is
misclassified for the trial-based evaluation. For the window-based
evaluation, the classification rates are 97.2%, 93.3%, 90.9% and 87.1%
for the empty room, lying, turning and walking activities, respec-
tively. Note that the SVM classifier was evaluated in [16], where
the average classification rate is 55% when using the same Doppler
time series data. Thus, the CNN-based classifier outperforms the
SVM-based classifier by 37% on average.

3.1.2  Challenges and Discussion. We find that the RSS measure-
ments suffer from the wireless interference problem, which is a
challenge for multi-modal sensor fusion and time series classifica-
tion. As shown in Figure 2, we see high variations in the RSS when
the human subject turned from one orientation to another orien-
tation during the lying-in-bed experiment. However, the wireless
link on Channel 19 has over 40 packets loss during the two-minute
experiment, and thus the high variation of RSS on Channel 19 ap-
peared earlier (around index 210 in Figure 2) than that of Channel
11 and the Doppler time series. Without using data imputation for
missing data, the wireless interference problem will significantly
affect time synchronization for sensor fusion.

In addition, the packet loss issue will also affect the temporal
correlation of the time series data and thus the performance of time
series classification. We find that if we omit the missing values of the
RSS data and directly apply CNN on RSS, the average classification
rate is 77%. We can use various data imputation methods, such as the
mean values or the K-nearest neighbors, to fill in the missing values
due to packet loss. We can also use recurrent neural networks,
such as the gated recurrent unit (GRU)-D method as proposed
in [2] to jointly predict the missing values and perform time series
classification. As future work, we plan to further investigate the
effect of packet loss on the performance of various time series
classification methods.

3.2 Analysis of Occupancy Data

For the data collected from the long-term occupancy experiment,
we use the CV system to automatically label the data as occupied or
empty room. We find that the variance of the Doppler time series
in a time window can be used to detect room occupancy. We also
find that the Doppler time series from the bed sensor and the room
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sensor have different probabilistic distributions, but both have long
ending tails.

Figure 6 shows the histograms of the Doppler variance (from 100
digitized Doppler samples in a window) from the Doppler sensors
facing the bed and room, during a 12-hour experiment without
any occupants in the room. Observe that the bed Doppler sensor
has a narrower distribution of variance than the room sensor. This
difference comes from the different noise statistics of the sensor
hardware, and it is also due to the intrinsic motion of the environ-
ment that we discuss next. From Figure 6 we also see that both
histograms have long tails, with the variance values up to 90 and
100 (note that the Doppler samples are digitized after the AD con-
verter, and thus have no unit). However, the variance of the Doppler
sensor from an occupied room can be as low as 80. Thus, a Doppler
variance threshold-based detection method cannot achieve high
detection rate.

An interesting observation from our long-term experiment is that
the Doppler signal can be affected by the environmental intrinsic
motion. From a two-day experiment, we find that the time series
from the bed Doppler sensor showed sinusoidal-shape pattern even
when no occupant was present in the room. We also find that
this pattern disappeared after 6pm Friday, which was the time
that the building facility turned off the heating, ventilation and
air conditioning (HVAC) system in that room. It turns out that
the plastic mattress of the hospital bed in the room shrinks and
expands periodically due to the HVAC system. Since the directional
antenna of the bed Doppler sensor is only two meters away from
the mattress surface, the bed Doppler sensor is sensitive enough to
capture the deformation of the bed mattress caused by the HVAC
system. To make the Doppler sensing system more robust to the
environmental noise, a state machine [5] can be used as a low-pass
filter to achieve better detection performance.

3.3 Future Work

As future work, we plan to design experiments to further explore the
complimentary nature of the CV system and the wireless sensing
systems for occupancy detection, location estimation and activity
recognition. One challenge in applying deep learning algorithms is
the requirement of a large training dataset. We propose to use our
testbed system to achieve automatic data labeling for the wireless
sensing systems. Since the camera-based tracking system achieves
high performance under good light conditions, we can collect data
from a controlled environment and use the CV system to label the
Doppler and RSS data, instead of manually labeling the ground-
truth. As described in Section 3.2, we used cameras to automatically
label data as occupied or empty-room for occupancy detection with
Doppler and RSS data. However, for human activity recognition,
we had to manually label each two-minute trial. In future, we can
ask participants to perform specific gestures before performing cer-
tain activity training, and the CV system can recognize predefined
gestures and then automatically label collected data.

We also plan to perform further experiments to investigate the
overfitting issue and the missing data issue. We currently collect
data from only one environment. Although the classification rate
from the CNN algorithm is over 90% for the Doppler time series
classification, we need to perform more experiments from different
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Figure 6: Histogram of variance from (a) Doppler sensor fac-
ing bed and (b) Doppler sensor facing room.

environments to investigate the possible overfitting issue and ex-
plore environment-independent recognition capability. With more
data collected, we can also further investigate the missing data
issue caused by the wireless interference, which is a unique prob-
lem in wireless sensing and many IoT applications. As an example,
we plan to investigate the recurrent neural networks framework
proposed in [2] to jointly perform data imputation and time series
classification.

4 RELATED WORK

For the human activity recognition problem, various wireless sens-
ing techniques have been proposed and developed recently [8].
[13] uses channel state information (CSI) of wireless devices and
proposed a sparse representation classification-based method to
recognize lying, sitting, standing and walking activities. [16] fuses
the received signal strength (RSS) measurements from a wireless
network with the Doppler signal and uses the support vector ma-
chine (SVM) method to classify four activities. In [4], four wireless
testbeds including WiFi, ultrasound, mmWave and visible light are
used to extract environment-independent features for device-free
human activity recognition.

As the deep neural networks (DNN)-based machine learning
methods have achieved the state-of-the-art performance in the
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computer vision related applications, researchers have used convo-
lutional neural networks (CNN) and other deep learning methods in
the human activity wireless sensing application [4, 8]. In this work,
we present preliminary results in applying the CNN algorithm on
the Doppler time series data.

5 CONCLUSION

We have integrated a computer vision tracking system with two
wireless sensing systems to collect four types of sensor data for
occupancy detection and human activity recognition. We describe
our observations and findings from a three-year human subject
study. We discuss challenges, problems and solutions in applying
machine learning algorithms in human activity recognition. Finally,
we propose future topics and directions on how to further use the
dataset and the multi-modal system.
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