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ABSTRACT
Person Re-ID is a challenging problem and is gainingmore attention
due to demands in security, intelligent system and other applica-
tions. Most person Re-ID works are vision-based, such as image,
video, or broadly speaking, face recognition-based techniques. Re-
cently, several multi-modal person Re-ID datasets were released,
including RGB+IR, RGB+text, RGB+WiFi, which shows the po-
tential of the multi-modal sensor-based person Re-ID approach.
However, there are several common issues in public datasets, such
as short time duration, lack of appearance change, and limited ac-
tivities, resulting in un-robust models. For example, vision-based
Re-ID models are sensitive to appearance change. In this work, a
person Re-ID testbed with multi-modal sensors is created, allowing
the collection of sensing modalities including RGB, IR, depth, WiFi,
radar, and audio. This novel dataset will cover normal daily office
activities with large time span over multi-seasons. Initial analytic
results are obtained for evaluating different person Re-ID models,
based on small datasets collected in this testbed.
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1 INTRODUCTION
Person re-identification (Re-ID) has drawn more attention in recent
years, especially, there are more recent studies regarding multi-
modal Re-ID using more than one sensor modalities [2, 6, 7]. Re-
ID has applications in many use cases including monitoring and
surveillance, badge-less entry, retail autonomous checkout, etc. The
problem setup includes a pre-acquired gallery of IDs, and a query
of IDs to be matched with the gallery for person re-acquisition.
Re-ID methods are typically evaluated using the top-k accuracy,
that is, accuracy is defined as when the same ID is found in the top
k candidates from gallery (e.g., k=1, 5, or 10).

Among different sensor modalities, vision-based models are the
most versatile and most widely studied for person Re-ID. Facial fea-
ture is one of the most important visual identification features. Face
recognition is currently a popular research topic with promising
results [3, 4, 16]. However, face recognition usually requires high
resolution face image, which may not be always feasible. Therefore,
person Re-ID typically focus on the whole-body appearance. There
are dozens of publicly available vision datasets for Re-ID [8]. These
datasets significantly advanced the development of the Re-ID tech-
nology. The datasets were typically collected using surveillance
cameras at distance from different locations with different view-
ing angles. The data collection time span is usually short, and the
same person’s appearance under different cameras is typically not
changed. The pixel size of a person is usually small. There are image-
based Re-ID methods which uses non-consecutive frames to extract
visual features, and video-based Re-ID method that use consecutive
frames to obtain spatial-temporal cues for feature matching [26].
Recent studies also show that whole-body Re-ID models focusing
on appearance features will fail if appearance changes [6].

Radio frequency (RF) sensors are also used for person Re-ID in
recent years, and various RF sensors are studied including software
defined radio (SDR) [6], mmWave radar [2], and commodity WiFi
[7]. SDR allows user to control the frequency band and is most
versatile in capturing human features and have been used in recog-
nizing human activities with promising results [1]. However, the
in-house devices are expensive and difficult to setup for comparison
with radar, WiFi and other sensing modalities. mmWave radars are
low-cost commodity devices that have been used for pedestrian de-
tection in automotive industry, and outperforms camera in certain
scenarios like low light conditions [18]. The radar data granularity
may be lower than SDR but higher than WiFi, but it also has a
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smaller coverage area than WiFi. Recent studies have shown that
radar is capable for person identification [2]. Commodity WiFi has
been studied for person pose [20] and person identification [7].
When a person is performing activities under WiFi coverage, re-
ceived signal strength indicator (RSSI) or channel state information
(CSI) are captured from WiFi devices, and these dynamic changes
could be extracted for person Re-ID. WiFi signal has larger coverage
area, less granularity than SDR or radar, and is noisy. WiFi is also
sensitive to the environment, including room layout, furniture lo-
cation, nearby people activities, other WiFi interference, etc. Subtle
environment changes may result in significant changes in RSSI and
CSI. Many studies set strictly confined environment, and limit the
person activity to certain types.

Recent studies have developed environment agnostic models
that were trained with multi-modal sensors, which is applicable
in different environments and is robust to certain environmental
changes [7]. Inspired by these multi-modal person Re-ID studies,
this work aims to create a person Re-ID testbed with multi-modal
sensors, including RGB image, IR image, depth point cloud, WiFi
CSI, radar, and audio data. The testbed will create a novel multi-
modal dataset that tackles some common problems in the existing
published datasets. 1. Large time span: the testbed will massively
collects data 24/7 continuously without environmental constraint
for several months spanning from summer to winter. 2. Uncon-
strained activities: with the testbed, people will conduct normal
daily office activities as usual. 3. Appearance change: the same
person will have various appearance including different clothing
and accessories at different time. The data will be annotated by ID
and tracklet instances. With the data collected, the performance
of various sensing techniques can be compared under different
conditions in the same environment, and the benefits of adding
one modality to other modalities can be evaluated as well. The
deployed testbed includes two sites with high traffic on a campus
of around one thousand people, with a total of 5 Intel RealSense
cameras which product RGB, IR and depth data simultaneously, 2
WiFi CSI subsystems with 1 and 3 WiFi links respectively, 2 radars,
and 2 ReSpeaker mic arrays. To evaluate performance of different
sensing techniques, different experiments with strictly confined
environment were performed. This is an ongoing study, and initial
analytical results are obtained with a small dataset annotated.

The major contributions of this paper are as follows. We propose
a person Re-ID testbed with multi-modal sensors, including a novel
dataset containing long recordings of multiple sensors. We also
provide initial analytical results for model testing with a subset of
the dataset. The rest of this paper is organized as follows. Section 2
describes the system architecture and the baseline multi-modal per-
son Re-ID methods. Section 3 describes the testbed implementation
layout, experiment details, and some initial results for testing differ-
ent Re-ID models using small annotated dataset from the testbed.
Section 4 concludes this study with some future works.

2 SYSTEMS AND METHODS
2.1 Overall system
The testbed is a system of systems, namely combined multiple
sensing systems that are hosted by different computers, and these
systems are loosely coupled. The vision system is responsible for

person detection, and for triggering other systems. The vision de-
tection results are also used as groundtruth for person detection
and person localization by other systems. Denote the computer
hosting vision system as PC1. Whenever the vision system detects
a person under a camera, a flag on PC1 corresponding to this cam-
era is marked "1". For each non-vision sensor, there is a process on
PC1 monitoring all the flags frequently. If one of the flags is true,
it remotely fetch the data from other computer which installs the
sensor. The data is piped through ssh tunnel directly to PC1, and
timestamped with PC1’s system time. Though there might be very
small delay when piping other sensor data, all the data modalities
use the same system time in PC1 for each data point. This resolves
the data synchronization problem.

(a)

(b)

(c)

Figure 1: System Architectures for the data collection
testbed: (a) vision system, (b) Intel 5300 WiFi CSI, (c) Nex-
mon WiFi CSI

2.1.1 Computer vision system. The vision system includes three
analytics: person detection, person localization, and person tracking.
Person detection module uses Yolo V5 [19] for localizing person
bounding box on the image during inference. Person localization
module uses both the provided camera intrinsic parameters and
the estimated camera extrinsic parameters, and then estimates the
detected person’s location in real-world coordinate system. Person
tracking module uses detection-based tracking model DeepSort
[22]. Intel RealSense Lidar camera L515 is used as the multi-modal
vision sensor. The camera streams include RGB, IR, and depth. The
depth is obtained using IR laser, which could be interfered with
ambient light or be absorbed by target materials, resulting a short
working range. Different streams can be aligned and depth can
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be transferred to 3D point cloud with the given camera intrinsic
parameters. The perspective-n-point method is used to estimate
camera extrinsic. To do this, the 3D real-world coordinate system
is defined, and four 3D points in the coordinate system and their
corresponding 2D projections in the image are annotated.

For person localization, due to the short range of the depth in
RealSense L515, only RGB image is used for localizing a person
during inference. First, the plane of ground floor is estimated using
RANSAC algorithm from the depth image. Then for a detected
person, the center pixel coordinate of the feet is converted to 3D
point corresponding to camera where the ray from camera origin
meets the ground plane, assuming a person is always on the ground.
Lastly, the 3D point corresponding to camera is converted to the
real-world 3D coordinate, and the location of the person is obtained.

For each input iteration whenever there’s a detected person, out-
put includes the cropped RGB image, IR image, and depth image.
The trigger is set for other sensing systems to collect data, until the
person leaves the scene of camera. For test area that is covered by
multiple cameras with overlapped views, the trigger can be set by
any camera so that the data collection of other senses continues
until the person leaves the scenes of all cameras. For sensing sys-
tem hosted by different computer, SSH tunnel is used to redirect
captured data to local file, so that all the sensor data will use the
same system time. The architecture of vision system is shown in
Figure 1 (a).

2.1.2 WiFi system. As the IEEE 802.11n standard and WiFi MIMO
devices are widely used nowadays, WiFi channel state informa-
tion (CSI)-based system becomes a promising solution for human
sensing with low-cost commodity hardware. We have investigated
two commodity WiFi hardware devices for developing our WiFi
CSI-based Re-ID systems: Intel 5300 network interface card (NIC)
with open-source IEEE 802.11n toolkit [11], and regular WiFi NIC
with Nexmon CSI extractor [9].

From the Intel system, we collect CSI measurements between
a WiFi router access point (AP) and the Intel 5300 NIC mounted
on a workstation. The Intel 5300 NIC reports CSI from 3x3 MIMO
antennas for 30 OFDM subcarriers with a total bandwidth of 20
MHz [11]. For the Nexmon CSI system, we use a Raspberry Pi board
with the Nexmon toolkit as the standalone monitor to collect the
CSI data between WiFi AP and all connected IEEE 802.11n devices.
The architectures of the Intel 5300 system and Nexmon system are
shown in Figure 1 (b) and (c), respectively.

2.2 Re-id based on face recognition
A pipeline including face detection and face identification was
used to evaluate the novel dataset and to provide baseline results.
Since visual face recognition features are typically powerful for
identification tasks, we hypothesized that face-based visual features
would probably be able to perform good identifications in most
cases. Our goal was then to rather track failure modes of state-of-
the-art face models, keeping in mind that the success of non-visual
sensory models on such face-failed cases would contribute to a
multi-modal re-id system. Our face recognition pipeline is based on
three stages: (i) A RetinaFace model [3] for face detection, (ii) face
alignment stage on which face boxes are rotated and translated to
canonical pose based on 5 detected face landmarks (provided by

the RetinaFace model as well), (iii) a face embedding stage based
on the MagFace model [16], in which each detected face box is
represented by a 512-D feature vector by which similarity to other
faces is computed.

2.3 Whole body Video based re-id framework
Whole body person Re-ID is a challenging computer vision task due
to complex environments, such as changes in illumination, differ-
ent camera viewpoints, low image resolution and potential person
occlusion in images. Deep learning-based person whole body Re-ID
has achieved very promising results on public benchmark datasets,
such as MARS [28], iLIDS-VID [23] and DukeMTMC-VideoReID
[21]. The whole body person Re-ID can be divided into two cat-
egories: image-based methods and video-based methods. Image-
based Re-ID methods only extract the spatial features from a single
image. In contrast, video based-Re-ID methods extract both spatial
and temporal information from video sequence, which enables more
robust and reliable person feature representation. However, person
appearance misalignment is a common issue in video-based whole
body person Re-ID due to imperfect person detection/tracking and
potential motion blur during video acquisition. Currently, twometh-
ods are commonly used to mitigate this issue: graph-based temporal
feature alignment [24] and 3D convolution- based temporal feature
alignment [10]. Gu et al. [10] propose Appearance-Preserving 3D
convolution (AP3D) to resolve the appearance misalignment in
temporal domain, and it achieves state of the art result on MARS,
iLIDS-VID, and DukeMTMC-VideoReID. In our video-based Re-ID
pipeline, we leverage the existing AP3D network with a Resnet-50
[13] pretrained on ImageNet [17] as backbone. The revised Resnet-
50 maintains similar network architecture with the original version
except 2D residual blocks are replaced with AP3D residual blocks
and total number of classes are changed to number of person ID
in corresponding video Re-ID dataset. With this modification, all
2D convolution layers are turned into AP3D convolution layers,
which allows the network to extract spatio-temporal from input
video sequence.

2.4 Pose estimation based on WiFi
Human pose information can be used to infer the internal body
dynamics, which carries out identity information based on gait [5,
14]. A multi-senatorial Re-ID system can therefore be benefited by
pose estimation based on non-visual sensor, such asWiFi, andwhich
provides identity also when the visual signal is missing or weak. Our
pose estimation framework is using a set of synchronized pairs of
CSI measurements and video frames. It includes a teacher-student
DNN model, similar to [20, 27], in which during training a vision
model is predicting a pose from the video frame, and compares it to
the pose that is predicted by aWiFi model. Our vision pose model is
based on a Mask-RCNN [12] model, which extracts 3D coordinates
of 17 body joints. Our WiFi model is a Multi-Perceptron model
which receives the CSI data as input, and outputs 3D coordinates
of 17 body joints. The visual network is freezed during training,
while the WiFi model is learned.
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2.5 Fusion Strategies
Multiples sensory processing modules require methods for fusing
information for improving the Re-ID performance. In this work
we are using three main fusion strategies: (i) Integration scores of
quasi-identifiers coming from different modalities (e.g., visual face
recognition, visual whole-body recognition, WiFi-Gait recognition,
etc.). (ii) A student-teacher learning strategy, where a strong vi-
sion model provides supervised examples for a weaker non-vision
model targeting the same task (e.g., the task of body pose estima-
tion from WiFi or Radar). (iii) A tracking strategy, where a Re-ID
task is successfully achieved by different modalities at different
time segments, but continuously maintained (e.g., Radar and vision
models enable continuous person localization, while a vision-only
model cannot).

3 EXPERIMENTS AND RESULTS

Figure 2: Experiment layout. Red rectangle is the Forge hall-
way. Blue dotted line is Intel WiFi link. Greed dotted lines
are Nexmon WiFi links.

The experiment has a primarily setup in GE Research Forge lab
and a secondary setup in main lobby. In Forge lab, 3 RealSense L515
cameras are mounted on the roof to cover the whole hallway with
approximate length of 33 meters and width of 2 meters, where most
of the traffic happens. Two WiFi sensing systems, Intel 5300 system
with single WiFi link, and Nexmon system with 3 WiFi links, are
both set at the east side of the hallway, mainly for comparison
purpose. The layout of both WiFi systems can be found in Figure
2. The main lobby setup has 2 RealSense L515 cameras mounted
above entrance gates.

Different types of experiments are conducted in the testbed.
Some experiments are under confined environment, where the
Forge lab is restricted to access temporarily to prevent unexpected
interference, and certain activities in the hallway for different stud-
ies. Some experiments perform different working patterns, some
experiments perform appearance changes. Most data are collected
under unconstrained environment with normal daily office activ-
ities, like group chat, carrying bags or office equipment, security
and janitor activities, and passing the hallway is the most frequent
activity.

The vision system runs 24/7 to generate tracklets during the
time persons appear in the camera field of view. Each tracklet is a
person instance detected by vision pipeline with multiple frames
from the vision tracking model, and other sensor modality data is
also saved simultaneously. During annotation, all the instances are

assigned to their corresponding IDs. WiFi, radar and audio data are
fused with tracklet frames by their timestamps. On average, every
month there are around 2500 tracklets saved for one camera. Note
that one person’s single pass under one camera may result in more
than one tracklets.

Face re-id pipeline: Our experiments consisted of a RetinaFace
model pretrained on the WiderFace dataset [25] and based on a
ResNet50 backbone, and aMagFacemodel pretraind on theMS1MV2
dataset [4] and based on a MobileNetV1 backbone. Since the record-
ings of our data were taken during the covid19 pandemic time, a
significant potion of the recorded faces were covered by masks.
For this reason we have used pretrained models augmented with
masked faces examples at training. Quantitative ID accuracy evalu-
ation of an annotated subset of our data was shown high identifica-
tion rate (91.8% of total number of frames). However, the multiple
detection and identification failures occur, which will serve for
bench-marking future models. Challenging factors for face iden-
tification are currently being explored quantitatively including:
face image quality and resolution, masked faces, crowded scenes,
occlusions, and extreme pose and illumination.

Whole body re-id pipeline: Due to the limited video data an-
notation in our current testbed, we leverage the existing public
datasets as our training dataset. To increase the robustness of the
extracted spatiotemporal features from query video sequence, we
create a combined dataset by combining three public video Re-ID
datasets: MARS, iLIDS-VID and DukeMTMC-VideoReID. This com-
bined dataset has total number of 1477 unique person ID. The AP3D
with Resnet-50 model is trained by using this combined dataset.
With public benchmark datasets, AP3D achieves about 90.1% on
MARS and 96.3% on DukeMTMC-VideoReID for the top1 accuracy
[10]. To evaluate the performance of the model trained on the com-
bined dataset, we collect an evaluation dataset that has 18 unique
persons with very different appearance as shown in Figure 3. There
is a total of 113 person tracklets, and we further split this dataset
into gallery and query set. With the gallery set, we pre-extract the
spatiotemporal feature vector with size of 2048 for each person
and store them in a dictionary format for inferencing. During the
inference or test mode, same size feature vector is extracted from
each video sequence in the query set, and then feature comparison
against the pre-extracted gallery features is performed using the
cosine similarity distance metric. At the end, distance-based rank-
ing is done by sorting the distance from the smallest to largest. The
top 1 ranking is our final predicted person ID as shown in Figure 3.
With total of 47 query video sequence, the whole body Re-ID model
trained with our combined public dataset achieves 70.2% accuracy
for top1.

WiFi pose estimation pipeline: WiFi-pose experiments in-
cluded a Mask-RCNN based model trained on CoCo [15], based on
a ResNet50 backbone for detecting human body box together with
body keypoitns [12]. The MultiPerceptron model including 7 linear
layers was used, followed by ReLu non-linearity. Input includes
flatten CSI measurements from 5 consecutive RF measurements (to-
tal of 1350 input elements). For preliminary training we have used
50 video segments synched with CSI data from two individuals pre-
senting different pose configurations at different visual conditions.
Sample predictions are shown in Fig. 4.
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Figure 3: Video Re-ID result for human subjects with dif-
ferent appearance. Correct ReID results are highlighted in
green, and detection errors are highlighted in red.

Figure 4: WiFi-pose predictions (right) compared with
vision-based pose predictions (left).

4 CONCLUSION
This work developed a multi-modal person Re-ID testbed by a
loosely coupled system of different sensing subsystems, and created
a novel multi-modal dataset that tackles several common problems
in existing published dataset, such as short time span, no or limited
appearance change. Initial analytic results for testing different Re-ID
models under different conditions are obtained using small datasets
collected from the testbed. The data collection is ongoing and data
annotation is work in progress. Dataset is planned to be released in
future.

Future work will need to investigate how to protect individual
privacy and sensitive data for a real world application. The current
proposed framework parses all the raw data to a central server
without masking sensitive information or anonymizing individ-
ual identities. Future work may investigate deploying the Re-ID
algorithms to an edge device network where feature extraction is
performed by the multimodal sensors near the source of the data.
The extracted features are then sent over the network to a central
server to be classified for Re-ID. This keeps the relevant information
while anonymizing sensitive data.
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