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ABST RA CT 

Network radio frequency (RF) environment sensing (NRES) 
systems pinpoint and track people in buildings using changes 
in the signal strength measurements made by a wireless sen­
sor network. It has been shown that such systems can lo­
cate people who do not participate in the system by wear­
ing any radio device , even through walls , because of the 
changes that moving people cause to the static wireless sen­
sor network. However, many such systems cannot locate 
stationary people. We present and evaluate a system which 
can locate stationary or moving people , without calibration, 
by using kernel distance to quantify the difference between 
two histograms of signal strength measurements. From five 
experiments, we show that our kernel distance-based radio 
tomographic localization system performs better than the 
state-of-the-art NRES systems in different non line-of-sight 
environments. 
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General Terms 
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1. INT RODUCT ION 
Localization of people using wireless sensor networks has 

significant benefits in elder care , security, and smart facil­
ity applications [3, 19, 20]. Standard "radio localization" 
systems locate a transmitter tag, or allow a receiver to esti­
mate its position [3, 16]. For these mentioned applications , 
it is critical to be able to locate all people , regardless of 
whether they carry a radio device. In this paper, we explore 
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"network RF environment sensing" (NRES), that is, using a 
static wireless sensor network to create an image map of the 
people and objects and thus locate them in an area of inter­
est based on the changes they cause in the radio frequency 
(RF) environment. An extensive review of reported NRES 
research can be found in [20]. NRES is also called "device­
free localization" [25], "passive localization" [28], or "sensor­
less sensing" [26]. Unlike infrared or thermal , RF penetrates 
non-metal walls , and thus NRES is useful for emergency ap­
plications. For example , in a hostage situation , police could 
deploy wireless devices outside of the building and learn in 
real time where people are located in the building, informa­
tion that may save live. NRES systems can also be used in 
emergency situations to help rescuers like firefighters locate 
victims. 

RF-based imaging and localization for emergency applica­
tions has been dominated by ultra-wideband (UWB) radar 
systems. Companies like Camero [1] have developed sophis­
ticated phased array radar systems that are capable of pen­
etrating walls. However, these UWB systems are expensive 
and are limited to military use only today. An emerging 
NRES technique is to monitor the received signal strength 
(RSS) on links in a deployed static network and to use the 
changes in RSS to infer the location of the people in the de­
ployment area [28, 29, 24]. As opposed to multistatic UWB 
radar [4] or MIMO radar [10], RSS-based NRES requires no 
expensive and sophisticated hardware, and thus can be im­
plemented with standard wireless networks and devices. We 
focus on such RSS-based systems in this paper. 

Although different NRES systems have been reported and 
tested , existing methods fail in particular situations. A com­
mon method is to use the change in mean in RSS on a 
link to indicate the shadowing from a person obstructing 
the link [18]. Shadowing-based radio tomographic imaging 
(RTI) uses changes in link RSS mean values to estimate 
the shadowing loss field in the area of the wireless sensor 
network [13, 23, 5, 12]. Shadowing-based RTI works well in 
line-of-sight (LOS) environments. In cluttered and non-LOS 
areas , the assumption that RSS will decrease when a per­
son is on the line between transmitter and receiver (the link 
line) fails. On a non-LOS link, the RSS may increase , de­
crease , or both, while a person is located on the link line [24], 
thus shadowing-based RTI fails in non-LOS environments. 
Variance-based NRES methods use the variance of RSS mea­
surements to locate human motion [29, 24]. These methods 
perform well even in non-LOS environments because a mov­
ing person changes the RSS of links as she crosses through 



them, increasing the RSS variance , even when the change 
in mean of RSS is close to zero. However, a stationary per­
son does not change the RSS variance, thus variance-based 
methods cannot locate her. 

One contribution of this work is to use kernel distance to 
quantify the change in RSS distribution caused by a person, 
rather than the change in mean or variance. Using kernel 
distance allows us to locate a person who is stationary or 
moving, and who is in an LOS environment or non-LOS envi­
ronment. In short , mean and variance are just two aspects of 
a random variable; a good metric like kernel distance quan­
tifies the changes in mean, variance and other distribution 
features , in one metric. In this paper, we explore different 
histogram difference metrics including the Kullback-Leibler 
divergence (KLD) [7] and the kernel distance [21 ] , and find 
that the kernel distance performs better than other metrics 
in NRES. A demonstration abstract has presented the idea 
of using a difference between two histograms as a method 
for RTI [32] , however no algorithms, analysis, or validation 
was presented. 

In general , kernel distance-based NRES methods require 
a single empty-room calibration, similar to shadowing-based 
RTI methods. However, a second main contribution of this 
work, we show that for our proposed NRES system, an 
empty-room calibration can be replaced with a "long-term 
histogram" which is calculated during operation , regardless 
of the presence or absence of people. By enabling online cal­
ibration , we allow the NRES system to operate without any 
empty-room calibration, and thus be used for emergency ap­
plications in which operators do not know a priori whether 
an area is empty or not. We show that simple filtering of 
online RSS measurements allows one to keep a long-term his­
togram in memory without significant computational com­
plexity. This long-term histogram is close enough to the 
histogram which would have been measured in an empty­
room calibration to perform as well as with empty-room 
calibration. In fact , in situations in which the environment 
has changed since the empty-room calibration, the long-term 
histogram is closer to a true empty-room measurement , and 
NRES performs better with it than with the offline empty­
room calibration. 

To summarize , the contribution of this paper is to pro­
vide a complete framework for RSS-based environmental 
inference, which enables localization of both moving and 
stationary people in both LOS and non-LOS environments, 
and which uses online calibration so that the system does 
not rely on "empty-room" offline calibration. We explore 
this framework using reported measurement sets and new 
measurement sets we collected for this purpose. We eval­
uate imaging, locating and tracking using our framework. 
The results show that some links' RSS measurements do not 
change significantly while a person crosses the link line , so 
using any single link for NRES is unreliable. However, in an 
N-node wireless sensor network, there is redundancy from 
the 0 (N2 ) links in the network, and one can reliably lo­
cate people in the environment. We formulate a new NRES 
method that estimates a map of human presence from kernel 
distances in the network, which we call kernel distance-based 
radio tomographic imaging (KRTI). Then a person's loca­
tion is estimated to be the coordinate of the pixel with the 
maximum image value. We then test tracking a single per-
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son in the area using a Kalman filter 1. Experimental results 
show that KRTI can locate a moving person more accurately 
than VRTI [24] and SubVRT [30] . For localization of a sta­
tionary person, KRTI also outperforms a sequential Monte 
Carlo method [25] both in localization accuracy and com­
putational efficiency. Note that if a person stays still at a 
location for a long time such as several minutes, our online 
calibration would gradually "treat" the person as part of the 
environment , and thus the person would disappear from our 
KRTI images. 

The rest of the paper is organized as follows. Section 2 
presents related work. Section 3 first introduces two types of 
RSS histograms and defines two histogram difference met­
rics, then describes how we use these metrics to image , locate 
and track a person in a wireless sensor network. Section 4 de­
scribes experiments used in this paper , and Section 5 shows 
the imaging, localization and tracking results. We conclude 
in Section 6. 

2. RELATED W ORK 
Many recent research studies have focused on RSS-based 

NRES method using measurements from a wireless mesh 
network [29 , 22 ,  24] , due to the fact that RSS measure­
ments are inexpensive and available in almost all wireless 
devices. However, all reported methods so far are ad hoc 
and incomplete. For example , [23] proposes an RSS model­
based method - shadowing-based RTI ,  to locate stationary 
and moving people in LOS environments. Based on a sim­
ilar model , [5] proposes methods to simultaneously track 
people and locate sensor nodes. However, these methods do 
not perform well in non-LOS indoor environments due to 
the multipath effects. For non-LOS indoor environments, 
variance-based methods using different network configura­
tions [29 , 24] have been proposed to locate human motion. 
For example , RF sensors are placed on the ceiling of a room 
to track people using the RSSI dynamic, which is calcu­
lated by RSS measurements with and without people mov­
ing inside the room [29] . Variance-based RTI deploys RF 
sensors on top of stands outside a residential house to lo­
cate and track people walking inside the house [24] . How­
ever , these variance-based methods cannot locate stationary 
people , since they all use certain forms of RSS variance to 
locate human motion, and stationary people do not cause 
much RSS variance. A more recent study [25] uses a se­
quential Monte Carlo method to locate both stationary and 
moving people. This method works at both LOS and non­
LOS environments,  however, it requires too much compu­
tational complexity and cannot be easily implemented in 
real-time. Compared with all above methods, our proposed 
NRES method is the only real-time method that is capable 
of imaging and locating both stationary and moving people 
in both LOS and non-LOS environments. 

To be able to locate both stationary and moving people , 
our method requires a long-term histogram from online RSS 
measurements. However, the measurements used here are 
unlabelled, which is different from the training measure­
ments used in fingerprint-based methods [ 17 ,  27] and the 
offline calibration used in shadowing-based RTI methods [23, 
5] . Some fingerprint-based methods use histograms of RSS 

1 Note that KRTI is capable of imaging the presence of mul­
tiple people , however, we focus on formulating localization 
and tracking of a single person in this paper. 



for purposes of NRES [17, 22]. During their training pe­
riod, RSS histograms are recorded on all links in a network 
as a person stands in a known position , which becomes a 
fingerprint for a person being at that location. Fingerprints 
are recorded as the person moves to each possible position 
in the environment. During operational localization period, 
the current RSS histogram is compared to all of the finger­
prints, and the person is estimated to be at the position 
with the closest matching fingerprint. These methods re­
quire RSS fingerprints at each possible person location (or 
each combination of persons' locations in the case of multiple 
people) , thus the training effort in fingerprint-based methods 
could be extensive for a large area. In contrast , shadowing­
based RTI requires a single "empty-room" offline calibration. 
Although this offline calibration does not involve extensive 
training , an empty-room area may not be available in the 
event of an emergency. Our online calibration proposed in 
this paper requires neither collection of location fingerprints 
nor empty-room calibration. 

Finally, background subtraction [9] and foreground detec­
tion [33] provide methods to classify, from unlabelled RSS 
data, when a link's RSS data corresponds to a period of mo­
tion near the link or a period of no motion. Such methods 
are an important part of future NRES systems which do not 
require an empty-room calibration period. The perspective 
of the methods proposed in this paper are complementary. 
The method in [9] requires a link to experience periods of 
motion and no motion, although unlabelled, so that the es­
timation algorithm can determine the distribution of RSS 
measurements in both cases. Both [9] and [33] model the 
state of the environment near the link as a binary - one of 
two states, obstructed by a person or not obstructed. Our 
kernel distance metric only measures a distance from the 
long-term "normal" condition, and thus might provide more 
"soft" information when the effect on the RSS may differ 
by the type or location of the obstruction , or the RSS in 
the "not obstructed" state does not simply stay close to one 
mean value. 

3. METHODS 
In this section, we first describe how we calculate short­

term and long-term RSS histograms, and show human pres­
ence could increase the difference between these two his­
tograms. Then we define metrics to measure histogram dif­
ference, and we formulate imaging , localization and tracking 
via histogram difference. 

Commercial wireless devices return a discrete-valued RSS 
value with each received packet. We denote the RSS of the 
ith packet as yi. We assume there is a finite set of possible 
RSS values, of size N. For example, if a device measures 
RSS in a range from Ymin to Ymax dBm and quantization 
is 1 dBm, then N = Ymax - Ymin + 1. Without loss of 
generality, we refer to the RSS integer as a number in the 
range 0, . . .  , N  - 1. 

We assume that there is a network with L links , and pack­
ets are transmitted repeatedly and regularly on each link, so 
that RSS measurements can be made. 

3.1 Short-Term and Long-Term Histograms 
In our proposed method,  a link is characterized by a his­

togram h of its recent RSS measurements. The kth element 
of vector h, that is , hk, is the proportion of time that RSS 
integer k is measured on the link. At time n, we denote this 
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(a) Stationary person effect on STH 

(b) Moving person effect on STH 

Figure 1: Long-term histogram (LTH) from offline calibra­
tion measurements and short-term histograms (STH) with 
and without (a) a stationary person; (b) a moving person. 

histogram as h n, and calculate it as a filtered version , or 
weighted average , of RSS measurements :  

(1) 

where yi is the RSS at time i, I is an N-Iength indicator 
vector, and Wn,i is the weight for Iyi. The indicator vector 
Iyi is one in element corresponding to the RSS integer yi 
and zero in all other elements. Essentially, Iyi is an instan­
taneous histogram based only on the current measurement , 
and hn is a weighted average or filtered version of past in­
stantaneous histograms. 

We test two different weighting schemes to compute h n, an 
offline uniform window, or an exponentially weighted moving 
average (EWMA). The EWMA scheme has weights ,  

Wn i = {!1(1 - !1t - i 
, ° 

i � n 

otherwise ' 
(2) 

where ° < !1 < 1 is the forgetting factor. A higher !1 in­
creases the importance of the most recent measurements in 
the histogram estimate. The EWMA is an infinite impulse 



response (IIR) filter, in which hn is calculated as , 

hn = (1 - ,8)hn-1 + ,8lyn. (3) 

In this way, only the current R88 value yn and previous 
histogram hn-1 are necessary to calculate the current his­
togram. Further , computation of (3) requires N multiplies 
and a single add. Thus we use the EWMA scheme for all 
histograms that are computed online , to minimize compu­
tational and memory complexity. 

A histogram is short-term or long-term based on the cho­
sen weights Wn,i. For the EWMA filter, the long-term his­
togram (LTH) would use a lower ,8, thus providing more 
weight to past measurements ,  than the short-term histogram 
(8TH). In the next sections, we denote the LTH as q and 
the 8TH as p. 

The offline uniform window has weight Wn,i given as , 

0::; i::;T-1 
otherwise 

(4) 

If we substitute (4) into (1), we see that the first T R88 
values are given equal weight to calculate the histogram. As 
is clear from the fact that Wn,i is not a function of current 
time n, the histogram computed from offline empty-room 
calibration does not change over time. We use (4) to im­
plement the "empty-room" calibration , that is, we compute 
the long-term histogram q from (4) when we want to test 
how our system would have performed if calibrated using 
data from an initial test period (from 0 to T) when no per­
son was in the area. The offline uniform window is used 
purely to compare results when using the proposed online 
LTH vs. the offline empty-room LTH. 

Examples shown in Figure 1 show how the 8TH and LTH 
differ for two example links. The empty-room LTH, com­
puted from T = 141 and the offline uniform window, shows 
a consistent value of -64 dBm on the link in Figure l(a). 
Two online 8THs are shown, both computed with ,8 = 0.9, 
when a person is present on the link line and when no per­
son is on the link line. With no person present , the 8TH 
is nearly identical to the empty-room LTH. When a person 
stands still on the link line , the 8TH shows a consistent R88 
of -68 dBm. In Figure l(b), a similar effect is seen - the 
8TH with no person on the link line is nearly the same as 
the empty-room LTH. Note also the "8TH with person" in 
this figure is from a time when the person is moving across 
(rather than standing still on) the link line , and two different 
R88 values are present in the 8TH. 

Finally, note that Figure 1 (b) shows the similarity be­
tween the online (EWMA-based) LTH and the offline empty­
room LTH. The online LTH, computed from EWMA with a 
forgetting factor ,8 = 0.05 does show some non-zero proba­
bilities of other R88 values (e.g. , -41, -43, -45, . . .  ), however, 
the probabilities of these values are very close to zero. It is 
the fact that these LTHs are very similar which allows us to 
replace the empty-room calibration , which requires knowing 
that no person is in the area for a period of time, with an 
LTH calculated online while people are present and mov­
ing in the area. Next , we formalize our discussion of the 
differences between histograms by defining two histogram 
difference metrics. 

3.2 Histogram Difference 
There are many ways to measure the difference D(p, q) 

between two histograms p and q. The "earth mover" dis-

232 

tance is a popular way of comparing two histograms. How­
ever , it involves solving an optimal transportation problem 
and thus is too computationally expensive for a real-time 
NRE8 system. Here , we choose another well known metric , 
the Kullback-Leibler divergence (KLD) [7]. We also propose 
to use the kernel distance , which has been recently applied 
in computational geometry [11]. 

3.2.1 Definitions 
The Kullback-Leibler divergence between two histograms 

p and q can be calculated as [7]: 

DKL(p, q) = L pdog �k, (5) 
k qk 

where iik = L, max(Etk) )' and E is a small number that we k max €,qk 
use to avoid any divide-by-zero. Note that we investigate 
the effect of E later in 8ection 5.4. 

The kernel distance between p and q is calculated as [21] 2 : 

DK(p, q) = pTKp + qTKq - 2pTKq , (6) 

where K is an N by N kernel matrix from a 2-D kernel 
function , and OT indicates transpose. One commonly used 
kernel is the Gaussian kernel , defined as : 

( ) ( IYj - YkI2 ) K Yj, Yk = exp -
O'b ' (7) 

where Yj and Yk are the jth and kth elements, and O'b is the 
Gaussian kernel width parameter. 

Another common kernel is the Epanechnikov kernel , which 
is optimal in the sense that it minimizes asymptotic mean 
integrated squared error [6], 

3 ( IYj - YkI2 ) K(Yj, Yk) = 4" 1 -
0'1 fIYj-Ykl:So-70' (8) 

where fa is the indicator function, fa = 1 where a is true 
and zero otherwise , and 0'1 is the Epanechnikov kernel width 
parameter. Note that the Epanechnikov kernel is not neces­
sarily optimal for KRTI. Both Gaussian and Epanechnikov 
kernel functions achieve similar performance in KRTI. 

3.2.2 Efficient Implementation 
The computation of (6) has 0 (N2 ) multiplication and 

add operations. We show in the following that the kernel dis­
tance can be calculated with only 0 (N) operations. First , 
we use the fact that K � is a symmetric matrix K � = (K �) T 
to change formulation (6) to the standard Euclidean dis­
tance : 

(9) 

where II . II indicates the Euclidean distance. Letting u = 
1 1 

K2p, V = K2q, we obtain, 

(10) 

Now, consider the online computation of the kernel distance 
at time n, that is, DK(pn, qn), where both LTH and 8TH 
are calculated using the EWMA method in (3). Instead of 

2 8trickly speaking , definition in (6) is the squared kernel 
distance. We use (6) in KRTI for computation convenience. 



Figure 2: RSS ( x ) and kernel distance ( + ) time series for a 
link which a person crosses at n = 23 and n = 120. 

updating pn and qn each time n, we can reduce computa­
tional complexity by instead updating un and vn, that is, u 
and v at time n > 0, using the same EWMA method: 

(11) 

where yn is the RSS at time n, {3p is the forgetting factor 
1 

for u, and (3q is the factor for v. The term K2Iyn is simply 
the kth column of matrix K!, where k is the index of the 
RSS yn in the histogram, and thus does not require any 
multiplications. Thus (11) only requires 0 (N) multiplies 
and adds. 

Now the current kernel distance at time n is calculated 
as : 

(12) 

This formula is identical to DK(pn, qn) except that it re­
quires 0 (N), rather than 0 (N2), multiplies and adds. Note 
that initial values Vo and Uo must be given. We assume that 
the system has been running prior to n = 0 and use these 
initial measurements to initialize Vo and uo. 

3.2.3 Examples 
Consider the example histograms in Figure 1. For Fig­

ure l(a) , DK(p, q) = 0.83 between the LTH and the STH 
with a person on the link line , if we use the Epanechnikov 
kernel with (TJ,; = 30. Without any people on the link line , 
DK(pn, qn) = 0, since the STH is the same as the LTH. For 
the moving people case in Figure l(b), DK(pn, qn) = 1.2 be­
tween the LTH and the STH with people , while DK(pn, qn) = 
0.2 if no people near the link. These two examples show that 
the presence of a stationary and moving person significantly 
increases the kernel distance. 

As another example , we show in Figure 2 both the RSS ,  
yn, and kernel distance , DK(pn, qn), for a period o f  time 
in which a person crosses the link twice. Kernel distance is 
very close to zero except when the person crosses the link 
at n = 23 and n = 120, when it exceeds 1.0. Note that 
o ::; D K (pn, qn) ::; 2. The kernel distance indicates clearly 
the link crossings by its high value. 
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3.3 Kernel Distance-Based Radio Tomographic 
Imaging 

Let d = [do , . . .  , dL-lf denote a histogram difference 
vector with L directional link histogram distances , dl = 
D(PI, ql) ' Let x = [xO, . . .  ,XM_l]T denote an image vec­
tor, where Xm is a measure of the current presence of a 
person or object in pixel m that was not typically present 
in the past. In other words , Xm is the "novelty" of human 
presence in pixel m. We assume that d can be expressed 
as a linear combination of x, as has been assumed for other 
RTI systems [18, 13, 23, 5, 12, 24]: 

d = Wx +n, (13) 

where n is a vector of measurement noise and model error. 
We use the elliptical weight model W given in [23, 24], in 
which the weight Wl,m for pixel m is non-zero only if the 
pixel center is in an ellipse with foci at the link transmitter 
and receiver locations. 

A radio tomographic image x be estimated from histogram 
difference measurements d using: 

where Cx is the covariance matrix of x, and Cn is the co­
variance matrix of the link measurement noise. Here we 
use a least squares formulation, which has been shown to 
outperform the Tikhonov regularization method [31]. The 
covariance matrix of the link measurement noise , Cn, is not 
generally known here , thus we assume the noise vector has 
i.i.d. elements. Thus Cn becomes an identity matrix multi­
plied by (T� . We propose to use the following modified least 
squares formulation : 

We model the scaled image covariance the same as in [31], 
where the (i, j) element of -ACx is given by "n 

[�C] = 
(T2 (_llfj - fill) 

(T� x 
. . 15 exp 15 ' 

',] 
(16) 

where (T2 = (T� / (T� is the ratio of variance of human pres­
ence (T; to the variance of noise (T� , which plays the role 
of regularization , 15 is a correlation distance parameter, fi 
and fj are the center coordinates of the ith and jth pixels , 
and II . II indicates Euclidian distance. From (15) we see the 
image estimate is the product of d with a projection matrix 
IlK which can be calculated ahead of time. Thus , the image 
estimate can be easily calculated in real-time. 

In Section 5.4 ,  we compare the performance of KLD and 
kernel distance for calculation of din (15) , and show that the 
kernel distance consistently outperforms the KLD. Thus we 
generally call our method kernel distance-based radio tomo­
graphic imaging, or KRTI. To obtain a good image resolution 
of human presence , we set the pixel size of KRTI to be 0.3 
m by 0.3 m in this paper. Then we choose RTI parameters 
as explained in [23, 24, 31]. We list new parameters and 
their values used in KRTI in Table 2. Note that we could 
tune these parameters for a particular experiment to obtain 
higher localization accuracy, but we use the same parameter 
values for all experiments to show that KRTI performs well 
in different environments. We investigate the effects of these 
parameters on KRTI in Section 5. 
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Name Task Description 
Exp. l stationary person calm day through-wall 
Exp. 2 moving person calm day through-wall 
Exp.3 moving person windy day with fans 
Exp.4 moving person environment changes 
Exp.5 moving person at a cluttered bookstore 

Table 1 :  Experimental datasets. 

3.4 Localization and Tracking 
In this section, we describe how to use the image in (15) to 

perform localization and tracking, which is the focus of this 
paper. We assume, for simplifying formulation purpose , that 
only one person is present in the network. When multiple 
people are in the area, they can be seen in the KRTI image , 
however, multi-target localization and tracking is not the 
focus of this paper. 

From the KRTI image estimate X, the position of the per­
son is estimated as the center coordinate of the pixel with 
maximum value. That is , 

z = rq where q = arg maxxp 
p 

where xp is the pth element of vector x from (1 5). The 
localization error of this estimate is defined as : eloc = liz -
z II, where z is the actual position of the person. 

To increase accuracy when locating moving people , we 
apply a Kalman filter to the localization estimates to track 
people's locations over time. In the state transition model of 
the Kalman filter, we include both mobile people's location 
and velocity in the state vector, and the observation inputs 
of the Kalman filter are the localization estimates. Note that 
other NRES methods like VRTI [24] is capable of tracking a 
person even if she stops moving for a while by recording the 
last location where she was present. However, VRTI can­
not image and locate a stationary person that is constantly 
present at a single location in the network. We evaluate 
both localization and tracking performance in Section 5. 

4. EXPERIMENT S 
In this section, we describe experiments that we use in 

evaluating our new framework. We use TelosB nodes run­
ning a network protocol called Spin [2]. At any particular 
time , only one node is broadcasting while all the other nodes 
are measuring pairwise RSS. The transmission interval be­
tween two nodes is set by the Spin protocol so that three link 
measurements are recorded each second to match the speed 
of human motion. For faster human motion, we can in­
crease the transmission frequency at the cost of more power 
consumption. All nodes are operating on the 26th channel 
of IEEE 802. 1 5.4 to avoid overlap with WiFi networks. A 
basest at ion connected to a laptop listens to the broadcast 
on that channel and collects RSS from these nodes. 

In Experiments 1 and 2, thirty-four radio nodes are de­
ployed outside the living room of a residential house. Dur­
ing the first experiment (Experiment 1) , a person is asked to 
stand motionless at twenty different known locations inside 
the living room. Experiment 2 is performed with the same 
settings , but the task is to locate a person walking inside 
the living room. A person walks around a marked path at 
a constant speed using a metronome so that the location of 
the person at any particular time is known. An important 
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Figure 3 :  Experiment layout and environment of Exp. 5. 

fact about Experiment 2 is after recording offline calibration 
measurements, a node (node ID 32) on the PVC stand was 
moved to a different location. This system change affects the 
system performance, which we discuss later. Experiments 1 
and 2 are performed and reported by [24]. The third and 
fourth experiments (Experiment 3 and Experiment 4) are 
new datasets ,  which are also through-wall experiments per­
formed at the same residential house with the same hard­
ware and software. Since a recent study [30] demonstrated 
the degrading effect of wind-induced motion on a variance­
based localization system, we choose a windy day and we 
also place three rotating fans at three locations in the liv­
ing room to create more motion to increase the background 
noise for Experiments 3 and 4. Both experiments are per­
formed in the same condition , and both are used to locate 
a person walking inside the house. The difference is that 
we observe significant environmental difference between the 
offline calibration period and the online localization period 
in Experiment 4. During the offline calibration period, wind 
blows strongly causing a lot of RSS variations , but it be­
comes much weaker during online period. We investigate 
the effect of system and environment changes on the system 
performance in Section 5. 5. The last experiment (Experi­
ment 5) is performed by Wilson et al. [25] in the University 
of Utah bookstore in an area of about 12 m by 5 m with 
thirty-four nodes deployed on book shelves and display ta­
bles. A person walks clockwise around a known path twice 
from Point A to Point D as shown in the experimental layout 
Figure 3(a). The bookstore environment is cluttered with 
shelves, tables and books ,  as shown in Figure 3(b). 

As summarized in Table 1 ,  the first four experiments are 
all "through-wall" experiments with thirty-four nodes de-



(a) Kernel distance PDF from NPOLL (b) Kernel distance PDF from POLL ( c) ROC curve 

Figure 4: Detection results of using histogram distance to detect a person on link line or not. 

ployed outside walls. The directional radio link density for 
these experiments is about 15  links per m2• For Experi­
ment 5, the link density is about 19 links per m2• All five 
experimental environments should be multipath-rich envi­
ronments. 

5. RESULT S  
I n  this section, we first evaluate detection via kernel dis­

tance , then we show imaging and localization results of a 
stationary person. After that , we show localization and 
tracking results of a moving person. Finally, we discuss the 
performance of using KLD and kernel distance , we also dis­
cuss the effect of environment and system change on KRTI 
performance. 

5.1 Detection of a Person on Link Line 
Before showing the imaging, localization and tracking re­

sults ,  we first test using kernel distance from a single link 
to detect the presence of a person on a link line. First , we 
define what we mean by a person being on a link line. We 
denote the transmitting node and receiving node of link I 
as it and jt, with coordinates Sil and Sjl' respectively. We 
denote the person's true location as z. Our definition of 
"person on the link line" (POLL) is that the person's center 
coordinate z is in an ellipse of excess path length A > 0 with 
foci at the node locations , that is, 

POLL : Iisil - zll + IISjl - zll < Iisil - Sjlll + A. (17) 

Note that we use A = 0.06m in our results ,  so that the 
elliptical area includes only positions very close to the line 
between the two nodes. 

We want to decide between two hypotheses , Ho that the 
NPOLL condition is true , and HI that POLL is true. To 
avoid making assumptions about the distribution of his­
togram differences given Ho or HI, we simply suggest that 
histogram differences will be higher under HI than under 
Ho. Thus , we decide whether we believe NPOLL or POLL 
is true by comparing the histogram difference to a threshold: 

(18) 

where 'fJ is a user-defined detection threshold that is set to 
be the same for each link, Pt and qt are the STH and LTH 
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from link I, respectively, and D(pt, qt) is calculated from 
either KLD or kernel distance formulation. 

Now, we use data from Experiment 1 and parameters as 
given in Table 2 to test the detection performance. First , we 
record all kernel distances during Ho (NPOLL). The distri­
bution of DK(pn, qn) given Ho is shown in Figure 4(a). Ap­
proximately half of kernel distances are zero , and the vasty 
majority are below 0.5. For the data recorded on links where 
HI (POLL) is true , the kernel distance distribution is shown 
in Figure 4(b). Now, fewer kernel distances are zero , down 
to 20%, however, this means that we have no chance of de­
tecting the person standing on the link line for 20% of links. 
From the distributions of DK(pn, qn) given Ho and HI, we 
calculate the receiver operating characteristic (ROC) curve 
in Figure 4(c). Even for a probability of false alarm (PFA) 
of 40%, the probability of detection is below 80%. Similarly, 
we test the use of KLD as the difference metric , with the 
resulting ROC curve shown in Figure 4(c). For low PFA, 
kernel distance has higher detection performance , while for 
high PF A, KLD performs better. The results show the dif­
ficulties in detecting human presence using only one link's 
RSS data. This motivates the use of a network of many 
links , rather than just a single link, in order to infer the 
presence and location of people in an area. 

5.2 Imaging and Localization of a Stationary 
Person 

We now demonstrate that KRTI can not only locate mov­
ing people , but also stationary people , a major advantage 
of KRTI over variance-based methods [24, 29] . In KRTI, we 
use the EWMA scheme for both long-term and short-term 
histograms, and the kernel distance , with parameters listed 
in Table 2. We use measurements from Experiment 1, in 
which a person stands motionless inside a house , and com­
pare imaging results from KRTI and VRTI [24] . In Fig­
ure 5 (a) , the KRTI image has relatively high pixel values 
near the true location of the person, and the pixel with 
maximum value is very close to the true location. Since 
a stationary human body does not cause much RSS vari­
ance , VRTI cannot correctly image the person's location, as 
shown in Figure 5 (b). Note that since EWMA filter is used 
to update histograms using online measurements, a station­
ary person staying at one location for several minutes would 
"fade away" from the KRTI images. However, if a person is 
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Figure 5: Imaging results of a stationary person (true loca­
tion shown as x ) from (a) KRTI and (b) VRTI. 

in the same location for minutes, we can always record the 
location where she disappears from the images , and start 
localization once new motion indicates that she has moved 
again. 

A recent method able to locate a stationary person in a 
multipath-rich environment is the sequential Monte Carlo 
(SMC) approach developed by [25] . The method of [25] re­
quires an empty-room (offline) calibration, and is substan­
tially more computational complex than the KRTI method. 
Further , across experiments, we show that KRTI is more 
accurate in localization. We run SMC using three hundred 
particles using data from Experiment 1. In Experiment 1 ,  
a person sequentially stands at each of twenty known lo­
cations for a constant period T. At each location we have 
about fifty KRTI estimates. For these twenty locations , we 
calculate the overall average error eloc = Li�l IIZa - zll, 
where za is the average location estimates from KRTI and 
SMC during period T. The average location estimates za 
from KRTI are shown in Figure 6,  in which the line between 
the average estimate (shown as triangle) and the true loca­
tion (shown as cross) indicates the estimation error. We see 
the errors from KRTI are generally below 1 m, more accu­
rate than the results from SMC shown in Figure 10 of [25]. 
The average error eloc from SMC is 0.83 m,  while eloc from 
KRTI is 0.71 m, a 14. 5% reduction. On the same 2.4 GHz 
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Figure 6: KRTI location estimates of a person standing at 
twenty locations. 

Core 2 Duo processor-based laptop, it takes 0.03 seconds to 
produce one estimate from our KRTI Python code , while it 
takes three to four minutes to produce one SMC location 
estimate. Thus , KRTI outperforms SMC both in accuracy 
and computational efficiency. 

5.3 Localization and Tracking of a Moving Per­
son 

Besides the improvement on imaging and locating station­
ary people , KRTI also provides better performance for lo­
cating moving people. Now we compare KRTI with two 
variance-based methods, VRTI [24] and SubVRT [30] . We 
run KRTI, VRTI and SubVRT on data from Experiments 2 -
5 ,  and calculate the root mean squared error (RMSE), which 
is defined as the square root of the average squared localiza­
tion error. As shown in Table 3, our KRTI can achieve sub­
meter localization accuracy in all experiments. Particularly, 
for Experiment 3, performed on a windy day, the RMSE 
from VRTI is 2. 1 m,  while the RMSE from KRTI is 0.81  m,  
a 61 % improvement. For Experiment 2 ,  performed on a calm 
day, SubVRT has a better performance than KRTI (0.65 m 
vs. 0.73 m RMSE for KRTI). Since SubVRT uses offline 
empty-room calibration measurements to estimate the noise 
covariance [30] , we expect it to perform particularly well dur­
ing windy conditions. KRTI does not use such empty-area 
calibration. However, KRTI significantly outperforms Sub­
VRT,  by 30-35%, in all other experiments. Particularly, in 
Experiment 4, in which the environment changes between 
the offline calibration and the online measurements ,  Sub­
VRT does not perform well. However, KRTI uses online 
measurements to build the long-term histogram, thus is not 
significantly affected by offline measurements. The RMSE 
of KRTI is 0.79 m in this case , a 31% improvement on Sub­
VRT. We discuss the effect of environmental changes in more 
detail in Section 5.5. For Experiment 5, due to the strong 
multipath environment of the cluttered bookstore (as shown 
in Figure 3 (b)) , neither VRTI nor SubVRT perform very 
well. However, KRTI is particularly robust to non-LOS en­
vironments and achieves 0. 74 m RMSE, a similar error as 
in other experiments. To summarize , KRTI does not just 
use RSS variance or RSS mean. Instead, it uses histogram 
difference to include both the effect of a stationary person 
and a moving person. It is particularly robust to the multi-
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Figure 8: Kalman filter tracking CDFs from VRTI and 
KRTI for Experiment 5. 

path environment , working just as well in strong multi path 
environments. 

Finally, we show the Kalman filter tracking results of Ex­
periment 5 in Figure 7. We see that tracking results have 
highest errors when the person is far from the closest radio 
node. For example , the tracking error is about 1 m when 
the person is located at the upper left corner of the path. 
However, KRTI with a Kalman filter is capable of tracking 
a person in a large multipath-rich environment with subme­
ter accuracy in general. We also compare the cumulative 
distribution functions (CDFs) of tracking errors from KRTI 
and VRTI in Figure 8. For VRTI, 95% of tracking errors are 
below 1.7 m, while 95% of errors from KRTI are below 1.2 
m,  a 29% improvement. We also see the median tracking 
RMSE from VRTI is 1.0 m, while it is 0.6 m for KRTI, a 
40% improvement. 

5.4 Kernel Distance vs. KLD 
In this section, we compare kernel distance and Kullback­

Leibler divergence (KLD) as histogram difference metrics in 
localization. Using an Epanechnikv kernel defined in (8), we 
test different kernel width parameters aJ,; . Figure 9 shows 
that KRTI performance is not sensitive to this parameter. 
RMSEs from Experiments 2 and 3 are both shallow functions 
of aJ,; , as long as aJ,; 2: 10. A kernel that is too wide tends 
to smooth the data so much that all measurements look the 
same. However, a kernel that is too narrow will not smooth 
the data at all , and as a result is easily affected by noise. The 
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Figure 9: Kernel parameter aJ,; vs. RMSE from KRTI. 
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Figure 10: KLD parameter E vs. RMSE from KRTI using 
KLD. 

kernel width should be chosen so it is roughly proportional 
to the scale of sensing noise; then a strong signal can still be 
observed, modest sensing noise will not change the results 
much, and outliers will tend to be smoothed away. 

To calculate KLD, we use parameter E in (5) to avoid 
division by zero. As shown in Figure 10, if E < 0.1, the 
localziation RMSE is only mildly sensitive to this parameter. 
However, from a comparison of Experiments 2 and 3, the 
RMSEs when using KLD are generally above 0.8 m, while 
most RMSEs from kernel distance are below 0.8 m. From 
Figure 9 and Figure 10, we see both histogram difference 
metrics can achieve submeter localization accuracy, however, 
kernel distance is less sensitive to its parameter aJ,; , and 
consistently outperforms KLD in localization accuracy. 

5.5 Effects of Environment and System Changes 
In the above tests, we use the EWMA filter to calculate 

the online LTH q. We can also use the offline empty-room 
calibration in order to calculate the LTH. We compare the 
two in this section. 

Note that if the environment changes or sensors change 
positions after the offline empty-room calibration , the changes 
diminish system performance. As described in Section 4, the 
location of a single node is accidentally changed after the of­
fline empty-room calibration period in Experiment 2, prior 
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to the online period. Even if a receiver node moves by only 
a fraction of its wavelength, its measured RSS values may 
vary by tens of dBs as a result of small-scale fading [8]. We 
apply the offline empty-room LTH in KRTI to generate the 
image in Figure 14, in which a person is walking and is at 
the position indicated by the cross. The figure shows two 
hot spot areas - besides the one close to the true location 
of the person, there is another one at the lower left corner of 
the network, close to node 32 indicated by the red circle. A 
similar false image , not shown, is seen during Experiment 4, 
in which the environment changes after the offline empty­
room calibration. We avoid this false image problem by 
using the EWMA for online calculation of the LTH. In our 
KRTI, we use solely the EWMA filter for online calculation 
of both long-term and short-term histograms. We do, how­
ever , require initialization of the histograms at time zero. In 
real-time operation, we would simply run the system for a 
short period to collect sufficient RSS measurements [14] to 
allow the LTH to "settle" prior to using its results. By using 
the EWMA filter, our KRTI does not have such false image 
as shown in Figure 14. To see how EWMA overcomes the 
effect of position change of a node in Experiment 2, we use 
the offline calibration measurements as the initialization of 
LTH, and then use EWMA and online measurements to up­
date LTH in our KRTI. The time series of position estimate 
error is shown in Figure 15. We see that KRTI estimate 
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Figure 14: Effect of a moved node on KRTI when using the 
offline empty-room LTH. 

error can be up to 6 m due to offline LTH affected by the 
node position change. However, after a few estimates , KRTI 
errors are all below 2 m. The false hot spot disappears from 
KRTI images due to the online EWMA update. 

We see the relative RMSE performance of empty-room 
LTH (offline FIR) vs. online LTH (online EWMA) in Ta­
ble 4. We see that the online LTH is as good or better than 
the offline LTH in every case. While the RMSEs are similar 
in Experiments 3 and 5, the online LTH performs signifi­
cantly better for Experiments 2 and 4, for which there were 
either sensor position changes or environmental changes be­
tween the empty-room calibration and the online operation, 
as described earlier. If we control the updating speed appro­
priately by choosing fJq = 0.05, the "online EWMA" method 
can achieve submeter accuracy for all experiments. Since 
Experiments 3 and 5 do not have much environment and sys­
tem change effect , both methods have similar performance. 

For KRTI using the online LTH, we test the effect of 
EWMA forgetting factor fJq. The RMSEs from KRTI with 
different fJq values are shown in Figure 11. The RMSEs are 
very shallow functions of fJq and are all below 1 m in the 
range of 0.01 to 0.1. If fJq is below 0.01, the weight of the 
latest measurement becomes very small , that is , the update 
process of the LTH is very slow. If fJq = 0, it is equivalent 
to no update. At the other extreme , if fJq is too high, i.e. , 



Figure 15 :  KRTI error time series. 

Parameter Value Description 
CJ " 0.05 Regularization parameter 
6 0.5 Space parameter (m) 

CJ� 30 Epanechnikov kernel width 
E 0.001 KLD parameter 

(3q 0.05 EWMA factor for v 

(3p 0.9 EWMA factor for u 

Table 2 :  Parameters used in KRTI. 

above 0. 1 ,  then the update speed becomes too fast. If (3q ap­
proaches 1 ,  then almost all previous RSS measurements are 
removed from the memory. To keep sufficient history mea­
surements in memory and also balance between these two 
extremes , we choose (3q = 0.05 as listed in Table 2. We also 
test the effect of EWMA factor (3p for updating the STH p ,  
we find KRTI performance i s  best in  the range o f  0.8 to  1 .  

Note that other methods can be used to  make an NRES 
system more robust to the environment and system changes. 
For example , [30, 31 ]  use subspace method and least squares 
method to reduce the noise effects due to the environment 
changes. Work in [ 15] shows that one can detect when a 
transmitter or receiver is mis-behaving, and future work 
might be able to automatically detect failed or moved nodes. 

5.6 Effects of KRT I  Parameters 
We have examined the effects of kernel width parameter 

CJ1 and EWMA coefficient (3q on the performance of KRTI 
in the above two subsections. Now we investigate another 
two important parameters - the regularization parameter CJ2 

and space parameter 6 in our KRTI formulation ( 16) . 
Recall that parameter CJ2 is the ratio of human presence 

variance to noise variance. From ( 15) and ( 16) , we see that 
the reciprocal of CJ2 plays the role of regularization parame­
ter as in [24, 23]. To see its effect , we set CJ2 values in a wide 
range from 0.001 to 10 ,  fix other parameter values and run 
KRTI to calculate the RMSEs. Figure 12 shows the RMSEs 
of KRTI vs. CJ 2 • We see that when CJ2 is in the range of 
0.002 and 0. 1 ,  RMSEs from Experiments 2 and 3 are both 
below 1.3 m,  and the RMSE vs. CJ2 curves are shallow. How­
ever , when CJ2 is above 0.2 ,  that is, less regularization is used 
in the inversion , the RMSEs increase significantly for both 
experiments due to insufficient smoothing effect from regu­
larization. We also notice that we need a smaller CJ2 value 
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RMSE (m) Exp. 2 Exp. 3 Exp. 4 Exp. 5 
VRTI 0.70 2. 12  1.46 1 .09 

SubVRT 0.65 1.05 1 . 14  1 .08 
KRTI 0.73 0. 81  0.79 0. 74 

Table 3: RMSEs of locating a moving person. 

RMSE (m) Exp. 2 Exp. 3 Exp. 4 Exp. 5 
Offline FIR 1.49 0. 74 5.02 0. 74 

Online EWMA 0.73 0.8 1  0.79 0. 74 

Table 4: RMSEs from KRTI using online IIR and offline 
FIR methods. 

for Experiment 3 compared to Experiment 2 to obtain the 
minimum RMSE. This is due to the fact that Experiment 
3 has more noise than Experiment 2. The noise variance of 
Experiment 3 is greater than that of Experiment 2, thus CJ 2 

should be set lower for Experiment 3 to keep the variance 
of human presence a constant. We set CJ 2 = 0.05 for all five 
experiments. 

Another parameter listed in 2 is the correlation distance 
parameter 6, which controls the spatial size of the exponen­
tially decaying regularization term in ( 16) . While CJ2 con­
trols the intensity of the regularization term, 6 affects both 
the intensity and the size of the smoothing "blob" (regular­
ization term) in the KRTI images. The RMSEs vs. 6 plot 
is shown in Figure 13. We see when 6 = O . l m ,  that is, the 
size of the smoothing blob is very small , RMSEs of both 
experiments are higher than 1 .5  m. Even if the intensity of 
the regularization is high, the general smoothing effect is not 
sufficient due to a small sized blob. As long as the smooth­
ing blob reaches the size of a typical human size of about 
0. 5 m, RMSEs are below 1 m. Increasing 6 beyond 2 m 
causes too much smoothing effect for Experiment 2 without 
much noise , thus RMSE of Experiment 2 increases slowly for 
6 > 2. For Experiment 3 with a lot of noise , a larger blob 
size averages out additional noise , thus RMSE continues to 
decrease slowly. For a single person experiment like Experi­
ment 3, it does not hurt to increase the blob size. However, 
for tracking more than one person, it would be necessary to 
limit 6. In this paper, we choose 6 = 0.5 for all experiments. 

5.7 Discussion 
Compared with other NRES methods, KRTI demonstrates 

better performance in imaging, localization and tracking. 
Shadowing-based radio tomographic imaging [23] can locate 
both stationary and moving people at line-of-sight (LOS ) 
environments, but does not work at multipath-rich environ­
ments. Compared with variance-based methods [29, 24, 30] , 
KRTI has the ability of imaging a stationary person as well 
as a moving person. For tracking a moving person, KRTI 
also outperforms VRTI and SubVRT. In addition , KRTI 

Features RTI [23] VRTI [24] SMC [25] KRTI 
Through-wall? No Yes Yes Yes 

Online calibration? No NA No Yes 
Stationary people? Yes No Yes Yes 

Real-time? Yes Yes No Yes 

Table 5 :  Features of different NRES methods. 
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can use an EWMA filter to update the long-term histogram 
continuously during an online period, and is more robust to 
environmental and system changes. The advantage of KRTI 
over the SMC method [25] is that KRTI does not require any 
empty-room offline calibration , and performs better both in 
localization accuracy and computational efficiency. To sum­
marize, KRTI has new properties that other methods do 
not. We list features of different methods in Table 5. To 
our knowledge, KRTI is the first NRES method that can 
locate both stationary and moving people in both LOS and 
non-LOS environments without any offline calibration. 

6. CONCLUSION 
In this paper, we propose a new NRES framework that 

uses histogram difference and online calibration to perform 
network RF sensing of people. Specifically, we propose a ker­
nel distance-based RTI ,  which uses the kernel distance be­
tween a short-term histogram and a long-term histogram to 
image and locate a moving or stationary person. We explore 
the framework using three reported measurement sets and 
two new measurement sets. We evaluate detection, imaging 
and tracking using our framework. Our experimental re­
sults show that KRTI provides robust imaging and tracking 
capabilities at multipath-rich environments ,  even though de­
tection from individual links is unreliable. Compared with 
previous methods , KRTI is the only real-time method that 
is capable of imaging and locating both stationary and mov­
ing people in both LOS and non-LOS environments without 
any training or empty-room calibration. 
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