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ABSTRACT

We propose to demonstrate a novel underground potato root tuber

sensing framework using deep learning algorithms. We build a

data acquisition system for capturing the ground truth of the tuber

shape and location underground as well as the received signal

strength (RSS) measurements from a wireless network. Then we

design a two-stage neural network to reconstruct the cross-section

images of potato tubers. Our initial experimental results show that

the reconstructed images can be used to predict the size and location

of various potato tubers buried underground with high accuracy.

We will demonstrate the real-time performance of our prototype.
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1 INTRODUCTION

Accurate and non-destructive crop biomass sensing is critical for

crop growth monitoring, crop phenotyping, and other smart farm-

ing applications. While various sensors and methods have been

proposed for crop above-ground biomass sensing, below-ground

biomass sensing remains largely understudied. With the advance-

ment of wireless sensing technology, radio frequency (RF) sensors

provide a promising approach to capture the shape, size and location

of underground objects due to their “see-through” soil capability.

Recently, [2] proposes to use a ground penetrating radar (GPR)

to detect and reconstruct images of below-ground roots. It uses a

deep neural network (DNN) to locate root branches in each 2D GPR

sensing slice, and then reconstruct the root structure from multiple

scenes. However, the sensing range of an GPR sensor is constrained

by the field of view of its antennas, and the applicability is hindered

by its high cost. In this demo, we propose an alternative approach,

a novel underground root tuber sensing framework, using RF mea-

surements from a low-cost wireless network. Our framework can

not only reconstruct the maximum cross-section of below-ground

potato tubers but also recognize tuber sizes.

2 FRAMEWORK

As shown in 1, in this demo, we propose to demonstrate a below-

ground potato tuber sensing framework using a wireless network

and DNN algorithms. Specifically, we first develop a data acqui-

sition system with a ZigBee wireless network. Then, we design
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Figure 1: An overview of our framework for potato tuber

below-ground sensing. RSS measurements from a network

of wireless nodes operating on 16 ZigBee channels are fed to

a two-stage neural network to reconstruct the cross-section

images of tubers, which will be projected to the surface of

the soil.

a two-stage neural network to reconstruct their maximum cross-

sections and recognize the size category of potato tuber using RF

measurements from the wireless network. Finally, we project our

estimated cross-section images onto the soil via a projector tied to

the PVC bracket. A video of this demo is available online1.

2.1 Data Acquisition System

Testbed: In our demo, we build a ZigBee mesh network using 16 TI

CC2531 nodes. The wireless nodes operate on the 2.4𝐺𝐻𝑧 ISM band

and can transmit on one of 16 frequency channels, each separated

by 5𝑀𝐻𝑧. The wireless nodes utilize a multi-channel time multiple
access (TDMA) communication protocol, as described in [1].

In our experimental setup, a sink node receives all packets trans-

mitted by the nodes. The sink node is connected to a laptop where

1Online demo video: https://youtu.be/gqGjgKJ9BHE
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the RSS measurements are collected and stored for subsequent

processing.

Data imputation: During the data collection process, three possi-

ble loss cases may occur. In the first scenario, a node in the receiving

mode encounters an unsuccessful reception of packets transmitted

by other nodes. The second scenario occurs when the other nodes

in the network do not receive packets transmitted by a particular

node. In the third scenario, all packets within a specific channel may

be lost. To tackle the challenges mentioned above, we utilize contex-

tual information for imputing the missing data. Specifically, when

a node is unable to receive packets transmitted by other nodes, we

employ values from the same frequency channel and transmitted

node at different time instances for imputation. Then, when pack-

ets broadcast by a specific node are not received by other nodes,

we impute the missing data by searching for values transmitted

from the same node in the same frequency channel at a later time.

Additionally, in the case where packets within a specific frequency

channel are lost, we employ values associated with the same chan-

nel at a later time to perform imputation. Ultimately, the sample

dimension utilized for training and testing is set to 16 × 16 × 16,

covering data from 16 frequency channels and 16 transceiver nodes.

Ground truth generation: To generate ground truth data for su-

pervised deep learning, we initially measured the size and position

of each potato tuber within the RF sensor coordinate system. Then,

we utilize an image to represent the monitored area, where each

pixel corresponds to a 1𝑐𝑚 × 1𝑐𝑚 region within the monitored area.

Based on the pre-measured size and position of the potato tuber, we

label the pixel values corresponding to the potato tuber as 1, while

assigning a value of 0 to all other pixel values in the monitored

area. Finally, we incorporate the Gaussian smoothing method to

refine the ground truth with a kernel size of 5× 5. Furthermore, for

potato tuber size recognition, we categorize each tuber into one of

three classes: “large”, “middle” or “small”.

2.2 Algorithm

In this subsection, we present our data-driven image reconstruction

algorithm, which includes two stages: (1) a multi-branch CNN-

based network maps RSS measurements to reconstruct images of

below-ground tubers and predict tuber size classes. (2) an UNet-

based [3] network aims to eliminate noise and enhance the contrast

ratio of the estimated results from the first stage.

Multi-branch CNN-based network: In this demo, we utilize a multi-

branch CNN-based network, with each employing a pyramid archi-

tecture. In particular, each branch is composed of multiple sequen-

tial convolutional blocks, each of which contains a convolutional

layer for feature extraction, a BatchNorm layer for managing covari-

ate shift and facilitating model convergence, and a ReLU activation

function for introducing nonlinearity to the neurons. Through us-

ing distinct convolutional sequences in the three branches, each

characterizes RSS data in a specific dimension. Subsequently, the

integration of features from the three convolutional branches is

accomplished through addition, followed by the application of a

dropout layer to mitigate potential overfitting issues. The output

from the dropout layer undergoes a non-linear mapping process in-

volving two fully connected layers and a ReLU activation function,

enabling the prediction of the cross-section image. Simultaneously,

it is fed into another non-linear mapping submodule, consisting of

two fully connected layers and a ReLU activation function, facili-

tating the prediction of the potato tuber’s size class label.

UNet-based network: In this demo, we employ a lightweight UNet

architecture with three convolutional blocks in both the encoder

and decoder, leveraging convolutional and deconvolutional opera-

tions as well as skip connections to generate high-resolution results.

In the encoder, each block utilizes a convolutional layer and the sec-

ond and third blocks incorporate a max pooling layer to downsize

the feature map. In the decoder, both the first and second blocks

consist of a deconvolutional layer followed by a convolutional layer.

The last convolutional block of the decoder has a single convolu-

tional layer employing a 1 × 1 kernel size, specifically designed

to reduce the channel dimensions of the decoder’s output. The

ultimate output of the decoder is a monochromatic image, and all

intermediate outputs are activated by a ReLU function. In this demo,

we conduct skip connections between the results obtained from the

second and third blocks in the encoder and those acquired from the

second and first blocks in the decoder, respectively.

The mean square error (MSE) loss function is used in both stages

to optimize the construction of cross-section images, while the

first stage also employs the cross entropy loss function to enhance

accuracy in identifying the size label for different potato tubers.

Note that, the training dataset for the first stage and the second

stage are different, which contributes to enhancing the universality

of the neural network in the second stage.

3 DEMONSTRATION DESCRIPTION

In the demo, we plan to deploy a wireless network with 16 wireless

nodes around a 60𝑐𝑚 by 60𝑐𝑚 area, where a container filled with

soil will be positioned within the sensing area. Demo audience can

pick one of the three potato tubers and bury it in the soil. Then,

we will run our data acquisition system to capture RSS measure-

ments and run our data imputation, DNN algorithms to reconstruct

cross-section images and predict the size category of the potato tu-

ber. Considering that environmental changes induce domain gaps,

we will also employ a few-shot domain adaptation algorithm to

fine-tune our algorithm, facilitating rapid adaptation to new envi-

ronments. Without strong wireless interference, we expect to show

audience the potato tuber shape and location prediction results

immediately after all algorithms finishing onsite. Note that before

placing the potato tuber into the container, a calibration process is

conducted without any tuber present. As an interesting test, we can

perform calibration for varying durations to observe the impact of

calibration measurements on the imaging and prediction accuracy

of the prototype.

REFERENCES
[1] Ossi Kaltiokallio, Maurizio Bocca, and Neal Patwari. 2012. Enhancing the ac-

curacy of radio tomographic imaging using channel diversity. In 2012 IEEE 9th
international conference on mobile ad-hoc and sensor systems (MASS 2012). IEEE,
254–262.

[2] Yawen Lu and Guoyu Lu. 2022. 3DModeling Beneath Ground: Plant Root Detection
and Reconstruction Based on Ground-Penetrating Radar. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. IEEE, 68–77.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Mu-
nich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 234–241.

252

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on September 04,2025 at 01:42:45 UTC from IEEE Xplore.  Restrictions apply. 


