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Abstract—We propose to demonstrate a new radio tomo-
graphic localization algorithm – subspace variance-based radio
tomography (SubVRT), which is more robust to RSS variations
caused by objects that are intrinsic parts of the environment.
We first introduce the subspace decomposition method, then we
derive the formulations of SubVRT, and finally we describe the
demonstration setup, requirements and procedures.

I. INTRODUCTION

Device-free localization (DFL) using radio frequency (RF)
sensor networks has potential application in detecting intruders
in industrial facilities, and helping police and firefighters
track human motion inside a building during an emergency
[1]. Human motion in the vicinity of a wireless link causes
variations in the link received signal strength (RSS). DFL
systems, such as variance-based radio tomographic imaging
(VRTI) use these RSS variations in a wireless network to
detect, locate and track people in the area of the network.
However, for variance-based DFL methods, variance can be
caused by two types of motion: extrinsic motion and intrinsic
motion. Extrinsic motion is defined as the motion of peo-
ple and other objects that enter and leave the environment.
Intrinsic motion is defined as the motion of objects that
are intrinsic parts of the environment, objects which cannot
be removed without fundamentally altering the environment.
If a significant amount of variance is caused by intrinsic
motion, then it may be difficult to detect extrinsic motion. For
example, rotating fans, leaves and branches swaying in wind,
and moving or rotating machines in a factory all may impact
the RSS measured on static links. We call variance caused by
intrinsic motion and extrinsic motion, the intrinsic signal and
extrinsic signal, respectively. We consider the intrinsic signal
to be “noise” because it does not relate to extrinsic motion
which we wish to detect and track.

The subspace decomposition method has been used in spec-
tral estimation, sensor array processing, and network anomaly
detection [2], [3]. This method decomposes the measurement
space into two subspaces, an intrinsic subspace and an extrin-
sic subspace. We find by projecting measurements onto the
extrinsic subspace, the impact of intrinsic motion on a DFL
system can be greatly reduced. We apply the subspace decom-
position method to VRTI, which leads to a new algorithm we
refer to as SubVRT. In this demo, we propose to demonstrate
real-time DFL of people using SubVRT.
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II. METHODS

A. Problem statement

For an RF sensor network with N sensors (radio
transceivers) deployed at static locations, we use zs,j to denote
the coordinate of sensor j. Since each sensor makes an RSS
measurement with all other sensors, we use sl,t to denote the
RSS measured at node il sent by node jl at time t, where
il and jl are the receiver and transmitter number for link l,
respectively. We assume constant transmitter power so that
changes in sl,t are due to the channel, not to the transmitter.
Then we denote the windowed RSS variance as:

yl,t =
1

m− 1

m−1∑
i=0

(s̄l,t − sl,t−i)2 (1)

where m is the length of the window, and s̄l,t =
1
m

∑m−1
i=0 sl,t−i is the sample average in this window period.

Consider that the network has L directional links on which
we measure signal strength. We let y = [y1, y2, · · · , yL]T be
the vector of windowed RSS variance from all L links, and
y(t) = [y1,t, y2,t, · · · , yL,t]T be the measurement vector y at
time t. Then we use yc to denote the calibration measurements
collected during the calibration period, when no people are
present in the environment; and we use yr to denote the
measurements from the real-time experiment period. The goal
of DFL is to locate people during real-time operation.

B. Subspace decomposition method

From the L-dimensional calibration measurement vector yc,
we may estimate its covariance matrix Cyc

as:

Cyc
=

1
M − 1

M−1∑
t=0

(y(t)
c − µc)(y(t)

c − µc)T (2)

where M is the number of sample measurements, y(t)
c is

the calibration measurement vector yc at time t, and µc =
1
M

∑M−1
t=0 y(t)

c is the sample average. Performing singular
value decomposition (SVD) on Cyc , we obtain:

Cyc = UΛUT (3)

where Λ is a diagonal matrix Λ = diag {λ1, ..., λL}, and U
is a unitary matrix U = [u1, · · · ,uL], in which ui is the ith
column vector.

Right multiplying U on both sides of (3), we can see that ui

are eigenvectors of Cyc , and λi are corresponding eigenvalues:

Cycui = λiui (4)
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If the eigenvalues λi are in descending order, then the first
principal component eigenvector u1 points in the direction of
the maximum variance of the measurement, the second prin-
cipal component u2 points in the direction of the maximum
variance remaining in the measurement, and so on.

In subspace decomposition, we divide all the principal
components into two sets: Û = [u1,u2, · · · ,uk] and Ũ =
[uk+1,uk+2, · · · ,uL]. Then we decompose the measurement
space into two lower dimensional subspaces spanned by Û
and Ũ . Since the variance during the calibration period is
caused by intrinsic motion, that is, the variance captured by
Û is intrinsic signal, we call the subspace spanned by Û
the intrinsic subspace, and the other subspace spanned by Ũ
the extrinsic subspace. Then we decompose the measurement
vector y into two components – intrinsic signal component ŷ
and extrinsic signal component ỹ:

y = ŷ + ỹ (5)

The intrinsic signal component ŷ and the extrinsic signal
component ỹ can be formed by projecting y onto the intrinsic
subspace and the extrinsic subspace, respectively:

ŷ = ΠIy = Û ÛT y (6)

ỹ = ΠEy = (I − Û ÛT )y (7)

where ΠI = Û ÛT is the projection matrix for the intrinsic
subspace, and ΠE = I − ΠI is the projection matrix for the
extrinsic subspace.

C. SubVRT

In VRTI, the presence of human motion within P voxels of
a physical space is denoted by x = [x1, x2, ..., xP ]T , where
xi = 1 if motion occurs in voxel i, and xi = 0 otherwise.
Work in [4] has shown the efficacy of a linear model that
relates the motion image x to the RSS variance yr:

yr = Wx + n (8)

where n is an L× 1 noise vector, and W is an L×P matrix
representing the weighting of motion in each voxel on each
link measurement [4].

Once we have the forward model, the localization problem
becomes an inverse problem: to estimate P dimensional posi-
tion vector x from L dimensional link measurement vector yr.
Here, we use the Tikhonov regularized VRTI solution, which
is given as:

x̂ = Π1yr where Π1 = (WTW + αQTQ)−1WT (9)

where Q is the Tikhonov matrix, and α is a regularization
parameter.

The key idea of SubVRT is to use the decomposed ex-
trinsic signal component of the measurements in VRTI. We
project the real-time measurement vector yr onto the extrinsic
subspace to obtain the extrinsic signal component ỹr =
(I − Û ÛT )yr. Then, we replace yr in (9) with ỹr and obtain
the solution of SubVRT:

x̂ = Π2yr where Π2 = (WTW + αQTQ)−1WT ΠE (10)

From (10), we see that the solution is a linear transformation
of the measurement vector. The transformation matrix Π2 is
the product of the transformation matrix Π1 in (9) with the
projection matrix for the extrinsic subspace ΠE : Π2 = Π1ΠE .
Since the transformation matrix Π2 does not depend on instan-
taneous real-time measurements, it can be pre-calculated, and
it is easy to implement SubVRT for real-time applications.

III. DEMONSTRATION

In the radio tomographic localization demo, we plan to
deploy twenty-eight TelosB nodes around a 4.2 m by 4.2 m
area. All nodes are programmed with TinyOS program Spin
[5], and they are placed on polyvinyl chloride (PVC) stands
to form an RF sensor network. A basestation connected to a
laptop is used to collect pairwise RSS measurements from the
network. A picture from a previous RTI demonstration of RSS
mean-based RTI [6] is shown in Fig. 1.

Fig. 1: A real-time demonstration of radio tomography in
which a person’s location is calculated and projected for
attendees to view.

A difference from the previous demonstration of RTI is that
in this demo, we use RSS variance caused by human motion
to locate moving people instead of using the attenuation effect
of the human body on RSS measurements. Another difference
between this demo and previous RTI demos is that we add in
intrinsic motion, and demonstrate SubVRT’s ability to remove
its effects from the resulting images. We propose to use
electronic rotating fans as sources of intrinsic motion. We
set up two rotating fans at two locations inside the deployed
area. Before people start to walk in the area, a calibration
is performed with fans rotating but without people present
inside. After the calibration, a person walks in, and SubVRT
is run by a laptop, which calculates and displays the motion
images in real-time. We will use another laptop to run VRTI
so that we can compare the results from both methods. As an
interesting test, we can record calibration measurements for
different time periods to see the effect of calibration duration
on the localization accuracy of SubVRT.
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