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Abstract—Unmanned aerial vehicles (UAV) with onboard sen-
sors become a cost-effective way of crop remote sensing in large-
scale farms. However, current vision-based crop aerial sensing
methods suffer from occlusion issue and require large amount
of annotation data. In this paper, we target one particular crop
species, corn, and propose to use 3D modeling and simulation to
help resolve the issues. We first develop a corn-field 3D model and
a crop aerial sensing (CAS) simulation framework. Then we use
the CAS framework to generate synthetic data to train various
deep learning models for corn leaf segmentation. In addition,
we change the 3D model parameters in CAS, e.g., distances
between individual corn plants, to derive leaf area index (LAI)
correction coefficients for various corn plant and row spacings.
Our experimental results from real-world UAV images show that
our leaf segmentation model using synthetic data from the CAS
framework outperforms state-of-the-art segmentation models by
1.4-3.3%. Our simulation results show that the plant and row
spacings of a corn-field have significant effects on correcting the
UAYV image-based LAI, which can be underestimated by a factor
of 2.6, due to the overlap and occlusion issues.

Index Terms—Remote Sensing, Smart Farming, Unmanned
Aerial Vehicle, Image Segmentation

I. INTRODUCTION

As the world population increases, more food needs to be
produced with limited expansion of cultivable land. Smart
farming, also known as Digital Agriculture, is the Agriculture
4.0 vision, in which farmers will use the minimum water,
fertilizers and pesticides to increase crop yield with the help
of digital technologies. The digital technologies being used
in smart farming include artificial intelligence (AI), internet
of things, robotics, etc. Among them, aerial sensing, i.e.,
crop monitoring with unmanned aerial vehicle (UAV) sensors,
becomes a cost-efficient way of data acquisition in large-
scale crop fields. For example, crop leaf area index (LAI)
can be estimated from RGB images taken by cameras onboard
UAVs [1]. Defoliation can be detected by deep learning models
trained from tens of thousands of UAV images collected
from soybean fields [2]. A multi-agent reinforcement learning
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algorithm is recently proposed to schedule and manage UAV
swarms to conduct crop monitoring missions [3].

In the aforementioned applications, UAV serves as a low-
cost, fast and maneuverable sensor that monitors large-scale
crop in an automatic and non-invasive way. However, these
applications still have the following challenges. First, the
performance of the Al algorithms heavily rely on manually-
annotated training dataset, which can be time-consuming to
obtain, especially for semantic segmentation tasks [4]. Second,
it is difficult to ‘“see-through” multi-layer and overlapping
crops using optical cameras onboard UAYV, due to the occlusion
issue [1]. In this work, we look into the digital twin technology
and develop computer simulation to help resolve the above
issues in smart farm aerial sensing.

Specifically, for the data annotation issue, previous studies
have used synthetic dataset and data augmentation methods to
generate large amount of training data for semantic segmenta-
tion and other tasks [4]-[7]. For example, data augmentation
preserving the photo-realistic appearance of plant leaves has
been developed to achieve state-of-the-art results on leaf seg-
mentation of rosette plants in the Leaf Segmentation Challenge
hosted by Computer Vision Problems in Plant Phenotyping [5].
Manually-annotated field images and synthetically-generated
images that mimic the distribution of real images have been
used in segmentation of weeds and corn crop [6]. However,
none of the studies above have targeted the aerial imagery,
where challenges at altitude and range cannot be ignored [8].
The recent study in [6] set up two cameras at two different
height levels, 2m and 1.6m, to collect corn images, but these
height levels are not even close to the heights when UAVs
collect field crop images. In this paper, we focus on aerial
sensing for the corn (Zea mays) crop species. We create a corn-
field 3D model (example shown in Figure 1), and develop a
crop aerial sensing (CAS) simulation framework. We use CAS
and data augmentation method to generate synthetic data that
are specifically targeted on aerial images collected from high
altitude.
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Fig. 1. Corn-field 3D model (annotations of corn leaves are highlighted in
blue in the bottom-right subgraph).

Second, for the occlusion issue in crop sensing, a recent
study [9] uses the stereo vision technique and develops a
depth discontinuity segmentation algorithm to separate the
overlapped leaves based on a depth discontinuity criteria. This
approach can significantly improve leaf segmentation perfor-
mance. However, the working range of the depth cameras
and the stereo vision technique is limited compared to RGB
cameras, and thus has limited potentials in large-scale aerial
sensing. While other sensors, such as synthetic aperture radar
(SAR) can be used to overcome the line-of-sight issue of the
optical sensors [10], in this work, we follow an alternative
approach, without investigating new sensors and hardware.
We propose to use computer simulation to find a calibration
approach, i.e., a correction method for crop aerial sensing.
Taking the LAI estimation for example, we can use computer
simulation to find a mapping between the LAI ground-truth
and the LAI derived from UAV images in various crop planting
conditions, e.g., various row and plant spacings. Then, an
LAI correction coefficient can be used in a real-world crop
aerial sensing mission. We use CAS to generate such a set of
correction coefficients for various crop spacings in this paper.

The contributions of this paper are summarized as follows:

o We build a corn-field 3D model, and a crop aerial sensing
(CAS) simulation framework, which simulates the UAV
data acquisition of crop images at various conditions.

e We develop two use cases for the CAS framework: 1)
generation of synthetic data for leaf semantic segmenta-
tion, 2) calculation of LAI correction coefficient.

o Our evaluation shows that the synthetic data from the
CAS framework improves the accuracy of the state-of-
the-art segmentation models by 1.4-3.3%. Our simulation
shows that the LAI derived from UAV images can be un-
derestimated by a factor of 2.6, due to the leaf overlap and
occlusion issues. We plan to make the CAS framework
and models publicly available upon paper acceptance.

II. METHODS
A. Corn-field 3D Model Creation

Blender is an open-source 3D simulation software, which
enables us to develop our own CAS framework. Previous
work in [11] builds an open-source grid-based render farm
in Blender, showing its ability in crop simulation.

To build a Blender-based simulation framework on crop
sensing, we first use Blender to control the texture of the
corn objects, since we need to change the original corn 3D
model texture for leaf annotation. Texture can be seen as a
regular and repeatable image, which is the starting point of
color rendering and also the part that people can control most
in the process. As a renderer, shader allows us to adjust various
parameters, such as the basic tone, reflectivity, roughness of
the model. For complex models such as the corn model, texture
is made into multiple types of images, which are used as
inputs for several parameters in shader respectively, so that
they can be rendered correctly. Material is the result of this
rendering process, that is, shader controls the blending of
multiple textures to form materials with specific visual effects.
Materials are independent and reusable, which can be assigned
to any object to form objects with rich color details that people
see in daily life.

After the object texture step, we generate multiple corn
plants and arrange them to mimic real situation. This can
be achieved by duplicating plant models and moving them
precisely. We first duplicate the corn model into multiple
plants. Then, for these duplicated plants, we can control their
position on X-axis and Y-axis in the Blender environment.
After these steps, we build a corn-field 3D model, as shown
in Figure 1.

B. Crop Aerial Sensing Simulation

1) Analysis of Real-world Corn Data Collection: In order
to produce high-fidelity synthetic image data, i.e., make the
synthetic data as close as possible to the data collected by
experts in the real environment, we conducted a systematic
analysis of the scene, where UAVs collect RGB images in
an experimental cornfield. We obtained a large number of
cornfield images from agricultural experts, which are RGB
images captured by UAV flying over a cornfield. Those RGB
images are orthorectified during the post processing. Then we
quantitatively analyzed the pixels-per-meter(ppm) index of the
orthophoto cornfield images and summarize the behavior of
the UAV and corresponding camera when conducting data
collection.

Based on the provided data, it is evident that in our data
collection scenario, the pilot will maneuver the unmanned
aerial vehicle to a height ranging from 30 to 50 meters above
the ground. Then the image sensor will be adjusted to be
parallel to the ground, enabling a top-down capture of cornfield
images. Moreover, We know that the spacing of maize plants
ranges from 0.3 m to 0.6 m according to the image scale. All
these information helps us to build a realistic cornfield and
conduct a realistic synthetic data collection in the following
work.
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2) Collection Configurations: Drawing upon the simulation
methodology elucidated in Section II-A and accounting for the
density of the cornfield, we constructed a realistic cornfield
environment model along with a corresponding labeled model
within our simulation environment, Blender. The labeled corn-
field model is built based on the realistic cornfield model,
but we replaced the texture of objects in the realistic model
with meaningful flat colors. We use three RGB flat colors
to distinguish different elements: corn leaf (255,255,255), sky
(0,255,0), and ground and others (0,0,0).

Following the establishment of the environment models, we
positioned our sensors within them and rendered images at
identical locations, utilizing the same camera settings. This
process facilitated the generation of pixel-to-pixel annotated
images depicting the cornfield. To ensure an ample and diverse
synthetic dataset for training the leaf segmentation model, we
devised four different configurations for collecting synthetic
cornfield dataset from various perspectives.

1) Config 1: Simulate the UAV collecting cornfield or-
thophoto image data in cornfield. We simulated the cam-
era 30m above the cornfield and flew to the collection
points shown in Figure 2 for synthetic data collection.
The distance between each collection point is set to be
2 meters, resulting in a total of 25 collection points. The
sensor simulation is configured in the orthophoto mode,
with a collection range spanning 4 meters, and an image
resolution of 480x320 pixels.

2) Config 2: Simulate the UAV collecting multi-angle syn-
thetic data. In this configuration, the camera focuses on
a specific corn plant, and the UAV carrying the camera
will rotate to collect non-orthophoto synthetic data. The
UAV rotates two circles around the center plant in the
cornfield, collecting a total of 100 synthetic images.

3) Config 3: Enrich the local information of synthetic data
by collecting partial feature images of corn leaves of
a single corn plant. The camera spirals up around the
single plant as the axis to collect local features of corn
plants.

4) Config 4: Enrich the overall features of a single corn
plant by collecting images of the plant from different
angles. The camera spirals up around a single plant as
the axis at a relatively far distance to collect overall
features of corn plants.

C. Leaf Segmentation

Corn leaf image segmentation is an important technique
for smart farming applications, such as pest detection [12],
unmanned aerial vehicle spraying [13], and precise fertilizer
calculation [14]. In this section, we discuss the segmentation
baseline model and the segmentation models, on which we use
synthetic dataset for training.

1) Segmentation Model: Due to the synthetic data contains
corn leaf images of different dimensions and accuracy, we
select the U-Net++ [15] model as the base model for corn leaf
image segmentation. U-Net++ is an improved convolutional

Fig. 2. Way-points (circles) of UAV for collecting aerial images in the CAS
framework.

neural network (CNN) structure that enhances the generaliza-
tion ability of image segmentation networks by extending and
optimizing the original U-Net [16] encoder-decoder structure.

The leaf image segmentation task at hand is a binary clas-
sification task, in which the pixels in the image are classified
as either corn leaves or non-corn leaves. For this problem, we
have chosen to use the Intersection over Union (IoU) index to
evaluate the effectiveness of the leaf segmentation model. This
index represents the degree of overlap between the predicted
segmentation result and the actual segmentation result, and is
calculated by dividing the intersection area of the predicted
and actual segmentation results by their union area. The value
of the IoU index ranges from O to 1, with a higher value
indicating better segmentation results.

2) Pre-process and Training: We implemented the U-
Net++ model using PyTorch. Then we using the four different
annotated datasets generated above and real-world human-
labeled dataset to train the leaf segmentation model, following
the standard pre-process scheme in semantic segmentation,
such as cropping, color normalization and image augmenta-
tion. In pre-process stage, all input images are formalized
to (480, 420) RGB image, and the mask are formalized
to (480, 320) gray-scale images. Then we performed color
normalization with the means and variation of ImageNet [17].
In the end, we apply image augmentation to improve data
diversity. Then we tested 6 different segmentation models on
this mission:

1) U-Net++ Manual: a segmentation model based on a
U-Net++ model pre-trained on ImageNet, then trained
on over one hundred manually labeled (before image
data augmentation) real-world top-down cornfield im-
ages captured by UAV.

2) U-Net++ Syntheticl: a segmentation model based on
a U-Net++ model pre-trained on ImageNet, and trained
on Synthetic dataset from Config 3 and Config 4.

3) U-Net++ Synthetic2: a segmentation model based on
a U-Net++ model pre-trained on ImageNet, and trained
on three synthetic dataset, Config 2, 3, and 4.

4) U-Net++ Synthetic3:a segmentation model based on a
U-Net++ model pre-trained on ImageNet, and trained on
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all synthetic dataset we generated in the four configura-
tions.

5) U-Net++ Synthetic + Manual: a segmentation model
based on model U-Net++ Synthetic3, then trained on
over one hundred manually labeled real-world top-down
cornfield images.

6) SAM: the SOTA general segmentation model Segment
Anything Model (SAM), which is a large-scale image
segmentation model from Meta Al Research [18].

After pre-process stage, we converted the RGB raw images
to (3, 480, 320) tensors, and converted the input gray-scale
mask to (1, 480, 320) images. The size of output tensor is (1,
480, 320), which classify the corresponding pixels to either
leaf or not-leaf. We used the pre-trained Resnext 50x24d
model on ImageNet dataset as the encoder of our U-Net++
model. We used Adam optimizer and Dice Loss to train our
model. Then we trained our model on the four annotated
dataset we generated above in four different rounds with
learning rate at 0.00008 (0.00001 after 15 epochs). Each round
has 15 to 20 training epochs.

D. LAI Correction

As mentioned before, the LAI derived from UAV images are
typically underestimated due to the leaf overlap and occlusion
issues. To make a correction to LAI, we define an LAI
correction coefficient ¢ as the ratio of the LAI ground-truth
LAIr,. to the LAI derived from UAV images LAIyay:

_ LAITrue
- LAlyay’

We explain how we calculate LAIp,,. and LAIy sy next.

1) LAI Ground-truth: First, for calculating the LAI ground-
truth, we use a built-in plugin Measureit in Blender, which
can output the total area of the planes selected by users.
To make the plane selection process easier, we can combine
some small planes to minimize the number of planes we need
to manually select. Some of the combined leaf can be seen
from the highlighted blue area in Figure 1. After several
rounds of combination, a single leaf will get few planes left.
In this way, we can use the plug-in to read and calculate
the true leaf area in total, and this leaf area is one part of
the LAI calculation. For the land area part, we can take the
circumscribed quadrilateral of 16 corn plants to calculate its
area, approximately near to a square with side length of 4.8
meters. In this way, we can simply get the theoretical LAI
ground-truth value from Blender.

2) LAI Derived from UAV Images: The next step is to obtain
the LAI from UAV images. As mentioned in Section II-B, we
use the camera plugin in Blender to take images at various
waypoint locations for our simulated corn-field with high
fidelity. Since too many color and texture levels of the 3D
model bring difficulty in leaf segmentation, we first make the
3D model monochromatic before the UAV image acquisition
step.

After that, we use semantic segmentation models, e.g., the
SAM segmentation model, to performance leaf segmentation.

® (D

Fig. 3. Four pairs of raw (left) and annotated (right) synthetic images of
cornfield.

Fig. 4. Top-down cornfield image(left) captured by UAV and the correspond-
ing mask(right) labeled by human.

Finally, we can count the number of pixels that leaves occupy
in the image.

III. EXPERIMENTS AND RESULTS

A. Leaf Segmentation Results

1) Synthetic Dataset: Figure 3 shows a couple of realistic
and flat-color images of the corn leaves, as they are captured
in different aspect and resolution. Each pair is corresponded
to a collection configuration in Section II-B2. The four pairs
of images from top to bottom are the examples of synthetic
dataset captured from Config 1 to Config 4. In this way, we
generate a batch of annotated synthetic data of corn leaf, an
exact correspondence at the pixel level has been achieved.

2) Test Results on Real-world Data: To demonstrate the
efficacy of the labeled synthetic dataset of cornfield, We
compare the segmentation result among the 6 different models
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Fig. 5. Segmentation results for Figure 4 of U-Net++ Manual(top-left),
U-Net++ Synthetic3(top-right), U-Net++ Synthetic+Manual(down-left) and
SAM(down-right).

TABLE I

IoU FROM THREE SEGMENTATION MODELS.
Model Average IoU | Max IoU | Min IoU
U-Net++ Manual 0.6535 0.8903 0.4531
U-Net++ Synthetic-1 0.4669 0.8256 0.1531
U-Net++ Synthetic-2 0.4964 0.8579 0.1863
U-Net++ Synthetic-3 0.5887 0.8360 0.2460
SAM 0.6343 0.9115 0.4033
U-Net++ Synthetic+Manual 0.6675 0.8511 0.4706

using 16 human-labeled top-down cornfield images collected
by UAV (Figure 4).

Table I shows the IoU indices for corn leaf segmentation,
and Figure 5 demonstrates the prediction result of the test
image showed on Figure 4. Significantly, considering the
lower-bound IoU index achieved by humans, which stands at
0.64, models U-Net++ Manual, U-Net++ Synthetic+Manual,
and SAM exhibit human-level segmentation results, scoring
0.6535, 0.6675, and 0.6343, respectively. Our best model(U-
Net++ Synthetic+Manual) exhibits a notable 3.3% increase in
the ToU index compared to SAM. Furthermore, it outperforms
a segmentation model trained exclusively on a human-labeled
dataset by 1.4%. It is not surprising that model U-Net++
Synthetic+Manual performs the best, given its training on both
synthetic dataset and real-world dataset, whereas U-Net++
Synthetic3 solely relies on a synthetic dataset and model
U-Net++ Manual solely relied on real-world dataset. As a
versatile segmentation model, SAM achieves a commendable
performance in corn leaf segmentation, only slightly trailing
behind U-Net++ Manual.

The segmentation performance of the U-Net++ Synthetic3
model, which is trained exclusively on synthetic dataset,
indicates the potential to develop a segmentation model based
solely on synthetic data, thereby alleviating the laborious task
of manual labeling. Note that our U-Net++ model has a
compact size of 196 MB, whereas the SAM (SAM-1b) model
size is 2.7 GB. Our lightweight model is more suitable for

TABLE II
LAI CORRECTION COEFFICIENT o FOR VARIOUS ROW SPACING AND
PLANT SPACING VALUES.

Case no. | Plant spacing(m) | Row Spacing(m) ©
1 1.2 0.381 1.876
2 1.2 0.508 1.605
3 1.2 0.635 1.344
4 1.2 0.762 1.202
5 0.381 1.0 2.611
6 0.508 1.0 2217
7 0.635 1.0 1.894
8 0.762 1.0 1.683

deployment on resource-limited IoT devices.

B. LAI Correction Results

1) Row and plant spacing settings for LAI Correction:
In the CAS framework, we can adjust the row spacing and
plant spacing for our corn-field model. Since previous studies
show that row spacing affects crop yield [19], in this paper,
we perform experimental analysis for the effect of row spacing
on the LAI correction coefficient. We fix the plant spacing as
1.2m, and analyze the change of the LAI coefficient as the row
spacing is set to be 0.381m, 0.508m, 0.635m, and 0.762m.

As mentioned before, to calculate the LAI correction co-
efficient ¢, we need to figure out three values: the leaf area
ground-truth, the number of pixel that leaves and the reference
plane take, and the area that the reference plane actually
takes. The leaf area ground-truth can be counted by using the
measureit plug-in in Blender, and the value is 16.74 square
meters. Let’s take row spacing of 0.762m as an example. From
the image taken by the UAV camera, we can calculate that the
corn leaves occupy 572,726 pixels, and the reference plane
takes 59,205 pixels. The last thing we need to know is the area
of our reference plane, and this can be easily known from the
measureit plug-in, read as 1.44 square meters. With these data
and the equivalent relationship of two ratios, we can calculate
the actual area that corn leaves take, which is 13.93 square
meters. Finally, based on the assumption we make, we can
calculate the LAI coefficient of this simulation to be 1.202.

As for row spacing of 0.762m and plant spacing of 1.2m, we
can see the plant arrangement like the following picture shows.
Using the SAM model, we can figure out that the pixel which
leaves take is about 572,614. Based on this and our reference
plane, we can calculate that the area that leaves take is 13.93
square meters. As we mentioned above, we have already
counted the leaf area ground-truth; so the corresponding LAI
coefficient can be calculated to be 0.832. With the same step,
we can also figure out the LAI coefficient in row spacing of
0.635m, 0.508m and 0.381m (listed in Table II).

In the analysis mentioned above, we fix the plant spacing
while changing the row spacing, in which way we calculate
the corresponding LAI coefficient at certain row spacing. Now
we will change the plant spacing when fixing the row spacing.
We choose to fix the row spacing to be 1 meter. As for
the corresponding plant spacing, we still make use of the
four values as before, which is 0.762m, 0.635m, 0.508m and
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0.381m. The result are shown in the case 5 to 8 of Table II.
From Table II, we see that the LAI can be underestimated by
up to a factor of 2.6, for the 1.2m plant spacing, due to the
leaf overlap and occlusion issues.

IV. RELATED WORK

Due to the “data hungry” nature of deep learning methods,
more and more synthetic data are generated and used in data-
driven model training. 3D modeling software such as Blender,
Unity are being used for the creation of realistic computer
graphic models. In this paper, we purchase a 3D model of
a single corn plant, and use Blender to create our own corn
field model. We also tested other simulation platforms such as
Gazebo [20]. We find Blender can provide more photo-realistic
crop models than the Gazebo simulator. Thus, we build our
simulation framework in Blender.

The idea of using computer simulation for sensing and
learning purposes was adopted in various domains, such
as self-driving, home-care robotics, etc. For example, the
CARLA simulator was an open-source simulation platform
for studying the performance of various autonomous driving
methods and generating synthetic data for Al model training
and validation [21]. RCareWorld, a human-centric simulation
platform for physical and social robots was developed for
simulating care-giving scenarios, and provides the capability
to plan, control, and learn both human and robot control
policies [22]. Our work focuses on the smart farming scenario,
in which we use a 3D corn-field model and simulation to avoid
tedious and manual work of image ground-truth labeling. The
corn-field model also gives us the flexibility to investigate the
effects of plant spacing on LAI coefficient correction.

V. CONCLUSIONS

In this paper, we develop a crop aerial sensing simulation
(CAS) framework using open-source 3D modeling software.
We use the CAS framework to generate synthetic data to train
deep learning models for corn leaf segmentation. We also use
CAS to derive relationships between LAI correction coefficient
and corn plant and row spacings at a particular corn growth
stage. Our experimental results show that the segmentation
model trained by synthetic and manual annotations outper-
forms state-of-the-art segmentation models. Our simulation
results show that LAI can be significantly underestimated due
to the overlap and occlusion issues.
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