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ABSTRACT

Chest X-ray is one of the most commonly performed radiologic procedures for respiratory diseases. Digital
tomosynthesis (DTS) provides volumetric anatomic information at lower cost and dose compared to computed
tomography (CT). However, current DTS system provides insufficient patient positioning feedback and requires
a large number of reconstructed slices in order to ensure imaging the entirety of targeted anatomy. We propose
an anatomy registration prototype using measurements from RGB-D cameras to 1) assist acquisition workflow,
2) provide individual-specific anatomical information to improve tomosynthesis reconstruction. Our experiments
show that anatomy registration can provide real-time feedback of patient 2D position and body thickness. Our
reconstruction simulations show that the anatomy and body information can speed up DTS reconstruction,
reduce the number of redundant tomosynthesis slices, and help reduce image interpretation time.
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1. INTRODUCTION

X-ray is widely used in the hospital general wards and intensive care units (ICU), and chest radiography is
the most commonly performed imaging study in the United States.1 Chest X-ray examinations are performed
to monitor patients’ respiratory progress, check catheters and lines, especially when patient transportation to
CT examinations is counter indicated.2 In chest radiography, digital tomosynthesis (DTS) is a technology that
enables volumetric anatomic information at cost and dose on par with regular 2D X-ray examination. A major
difference from the 2D X-ray system is that chest DTS system includes a computer-controlled gantry for the
X-ray tube, which allows the tube to tilt at various angles and thus acquire multiple views when sweeping over
a predefined path. For patients with respiratory diseases or clinically suspected infections, chest X-ray images
from a DTS system have better image quality for pulmonary infiltrates, nodules, and thus can provide better
detection, diagnostic and monitoring outcomes.1,3 The improved image quality and visualization could also
obviate the need for multiple retakes and transport outside the ICU for further imaging, and thus reduce the
time, cost and infectious risk of patient transport to the radiology department.

Despite the advantages over conventional radiography, DTS has limited depth resolution due to the limited
sweep angle range. It is more sensitive to motion, and thus long breath holds are often required for patients in
order to reduce motion artifacts. DTS also produces a larger number of slices, which means a longer interpretation
and review time than 2D chest radiography, e.g., 200 seconds vs. 120 seconds on reported average.4 Finally,
DTS is only currently available for fixed-room environments where mechanical registration is provided. For
future mobile DTS system design, the X-ray tube and the portable detector need to be positioned relative to
patient anatomy, e.g., lungs, as best as possible during chest X-ray examinations of bed-ridden patients. In this
work, we propose to estimate individual-specific anatomical structure information for optimizing the acquisition
parameters, e.g., dose, source to object distance, and to deal with the limitations of chest X-ray DTS.

As cameras become adapted with imaging systems in a secure hospital environment, there is an opportunity for
low-cost, vision techniques to provide cost-efficient solutions for various human sensing applications, e.g., human
detection,5 pose estimation6 and body segmentation.7 In addition, recent deep neural network-based algorithms
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has achieved high accuracy and begun to exceed human performance in many tasks, with the help of large training
datasets, e.g., ImageNet.8 In addition, researchers in the augmented reality and virtual reality communities
have developed prototypes to project anatomical structures and annotations over the human body for cloth
fitting, garment production and education purposes.9,10 However, there has been less effort in integrating
anatomical information for automating the medical imaging workflow. While researchers in the medical imaging
community have been actively applying deep learning techniques in creating new reconstruction and image
processing algorithms,11 in this work we propose a framework to apply deep learning algorithms to obtain
patient-specific anatomical and body information, e.g., lung location and chest thickness, to obtain optimal
parameters for existing DTS reconstruction algorithms.

Specifically, we propose to use an RGB-D camera as a peripheral device in a DTS system, and apply the
state-of-the-art human detection and pose estimation algorithms6,7 to detect body keypoints from the camera’s
RGB images. One example is shown in Figure 1. Based on the detected keypoints, we perform 2D anatomical
registration by mapping patient keypoints with those from human anatomical models.12 For patients with
postero-anterior (PA) chest views, we combine our 2D registration results with depth measurements to estimate
the chest thickness of the patients. The 2D anatomy registration will provide real-time feedback of patient body
positioning, ease workflow operation, and reduce the chance of retakes. The body thickness information can be
used to optimize DTS acqusition and reconstruction parameters, e.g., dose, reconstruction matrix size, etc. The
number of DTS slices can be significantly reduced, considering the large variation in adult thorax thickness, e.g.,
up to 11 cm.13 That is, the adapted DTS reconstruction volume parameter can lead to less image interpretation
time for doctors and radiologists. Our reconstruction simulation further shows that personalized anatomy and
body information can significantly reduce DTS reconstruction processing time, e.g., by 41%, compared with the
filtered back projection (FBP) algorithm without using any anatomy information.

To summarize, the contribution of this paper is to provide a framework to infer anatomy information from
camera view to achieve optimized DTS acquisition and reconstruction. We develop an anatomy registration
prototype with RGB-D cameras for the PA chest X-ray use case. We demonstrate that our anatomy registration
provides real-time feedback to assist patient body positioning. We also perform reconstruction simulation to
evaluate the impact of using anatomical and body information on reducing the reconstruction time and the
number of redundant tomosynthesis images. The rest of the paper is organized as follows. Section 2 describes the
anatomy registration prototype, DTS reconstruction and system simulation. Section 3 presents our experiments,
registration results and their impact on DTS reconstruction. We conclude in Section 4.

2. METHODS

In this section, we first present our anatomy registration, body thickness estimation algorithms. Then we describe
DTS reconstruction and possible ways to incorporate anatomy and body information.

2.1 Anatomy registration

We propose to use RGB and depth images to 1) register 2D anatomical structure, i.e., lung of a person with
a canonical human anatomy model, and 2) estimate chest thickness in the postero-anterior (PA) chest X-ray
scenario. The overall pipeline of the anatomy registration and chest thickness estimation algorithm is shown in
Figure 2, and we explain all the components in detail next.

First, we apply the state-of-the-art 2D pose estimation algorithm6 to detect a person’s body part keypoints,
such as shoulders, knees, etc. Then we select four keypoints: right and left shoulders, right and left hips, which
are the closest joints to the chest, as shown in Figure 1. Assuming the person is standing and facing away
from the camera that is mounted on the X-ray tube, we perform a rigid transformation to estimate the position
of the lung by registering the detected keypoints to keypoints on a canonical human anatomy model, e.g., the
male Duke model, or the female Ella model.12 The lung image from the anatomy model is then superimposed
on the camera view, so that the X-ray operator can properly assess whether the patient is properly positioned.
Examples of our anatomy registration results are shown in Figure 4. Note that four keypoints are required in our
registration for the PA view, and for the lateral view, we may have fewer keypoints available. We can perform
body segmentation to obtain additional information, but we leave it as future work and focus on the PA view
use case in this work.
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Figure 1. Depth image (left) and RGB image with detected joint keypoints (right) from D435 camera (blue annuli indicate
our selected keypoints in anatomy registration).

While the 2D anatomy registration is achieved by using images from the RGB camera, we obtain the depth
view of the scene from the depth camera. After an RGB and depth alignment, we map our estimated lung image
to the depth measurements to obtain the depth profile for the lung area. For a fixed room DTS system, the
position of the X-ray detector is known; thus we can calculate its 2D position in the camera view and obtain the
depth of the detector as well. Comparing the detector depth with the lung depth profiles, we can calculate the
body thickness of the lung area. Specifically, we define chest thickness as the maximum body thickness of the lung
area, and we calculate it by subtracting the peak value of the lung depth profile from the X-ray detector depth.
Note that we smooth the depth profiles by averaging measurements during a time window when the human
body is stationary, since the depth data from an RGB-D camera can be noisy in varying environment conditions.
Also note that a 3D lung registration is possible by further applying registration on the depth profile. However,
we only estimate the chest thickness instead of the lung thickness, considering the large variations in human
anatomy, clothing condition, deformation issue and depth measurement noise, which we discuss in Section 3.3.

Figure 2. Flow chart of the anatomy registration and chest thickness estimation algorithm.

2.2 DTS Acquisition and Reconstruction

Before incorporating our registration results in DTS acquisition and reconstruction, we describe the DTS system,
reconstruction algorithm, and numerical phantom model used in this paper. First, we assume the X-ray detector
in the DTS system has a standard size of 40cm by 40cm, the X-ray tube has a sweep angle of ±20 degrees,
and the source to image distance (SID) is 100cm.14 For DTS reconstruction, we use the filtered back projection
(FBP) algorithm to reconstruct radiation measurements into DTS slices. Considering an adult anterior-posterior
thickness range of 19.4cm to 30.8cm,13 we set the maximum reconstruction volume dimensions to be Lx = 40cm,
Ly = 40cm, and Lz = 32cm, where Lx, Ly are the XY dimensions to cover the full detector area, and Lz

represents the Z dimension to cover all possible human body thicknesses. That is, the reconstruction volume
matrix size is set to be 40cm by 40cm by 32cm, without incorporating anatomy and body information. Thus, if
the DTS slice depth interval dz is set to be 0.2cm, our DTS reconstruction will produce 160 slices. Finally, we
use the virtual family anatomy Duke model12 to create our chest numerical phantom model, on which we can
apply DTS reconstruction in our evaluation. The lateral and PA views of the Duke model are shown in Figure 3.

Now we propose the following ways to incorporate estimated person anatomy and body information in the
DTS acquisition and reconstruction processes. First, we combine our anatomy registration results with the
position of the X-ray detector to assist DTS acquisition workflow. For a fixed room X-ray system, the position
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and orientation of the X-ray detector is precisely controlled. Thus, we can use the pose information to calculate a
bounding box in the camera view. Then, we use our anatomy registration results to detect if the X-ray detector
covers the lung area or not and indicate the result to the operator. That is, real-time feedback of patient
positioning can be provided to the X-ray operator as to whether the estimated lung position is entirely covered.

Figure 3. PA (left) and lateral (middle) views of the Duke anatomy model and the corresponding keypoints on the camera
view of a person (right).

Second, the anatomy and body dimension information can be used to select optimal parameters for the DTS
reconstruction algorithm. For example, instead of using a fixed volume matrix size, the length parameters in the
horizontal XY dimensions Lx, Ly can be determined based on the width and length of the registered lung, and the
chest or lung thickness estimation can be used to determine the Lz parameter. In this work, we choose to use the
estimated chest thickness as the vertical length parameter Lz, and call this DTS reconstruction anatomy-based
filtered back projection (aFBP). The reconstruction volume matrix parameters Lx, Ly and Lz used in aFBP are
shown in Figure 3. Note that we can also adjust the radiation dose based on the body thickness information,
since the attenuation from different body sizes would be very different. However, the body mass index (BMI) is
widely used, and dose management is out of the scope of this work. In the next section, we perform experiments
and simulations to evaluate the above two ways of using the anatomy registration in chest X-ray DTS to 1) assist
acquisition workflow, and 2) improve DTS reconstruction efficiency.

3. EXPERIMENTS AND RESULTS

In this section, we perform experiments to demonstrate that our anatomy registration prototype can provide real-
time feedback to assist chest X-ray workflow. We also run DTS reconstructions to investigate the improvement
we can obtain by using the anatomy and body information in our reconstruction algorithms.

3.1 Workflow Assistant

We mimic the DTS chest X-ray workflow in our experiments by setting up a flat poster stand as our mock-up
X-ray detector, as shown in Figure 4. We use the Intel RealSense D435 camera system to capture the RGB
and depth images. We deploy the camera at various distances, e.g., 100cm, from the X-ray detector, facing
perpendicularly to the detector plane. As shown in Figure 4, our anatomy registration prototype projects lungs
to the camera view, and also calculates the body thicknesses at different distances, e.g., 100cm, 110cm away
from the camera. If the registered lungs are inside a predefined region, i.e., the X-ray detector area, a green
box is shown to indicate correct person positioning. Otherwise, a red box is shown as a warning to operator.
Note that the colored bounding box is just a way to illustrate the real-time feedback function that the anatomy
registration provides. In a real chest X-ray scenario, other ways of notification, e.g., audio, can be used to ease
workflow operation and reduce X-ray retakes.

3.2 Improve Reconstruction

We now evaluate the impact of using anatomy and body information on DTS reconstruction. We run our
reconstruction algorithm on a workstation with Intel Xeon 2.1GHz CPU (8 cores) and 64GB memory, and we
record the processing time of the FBP reconstruction algorithm for various reconstruction sizes in the vertical
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Figure 4. Anatomy registration and body thickness with different SID distances, 100cm (left) and 110cm (right).

Time (sec.) 18cm 20cm 22cm 24cm 26cm 28cm 30cm 32cm
dz = 1mm 100.3 110.4 113.3 122.7 146.3 168.5 174.6 194.7
dz = 2mm 82.1 89.0 98.6 108.8 134.3 147.0 162.7 189.7

Table 1. Reconstruction time vs. chest thickness for 1mm and 2mm slice internals.

dimension Lz. The reconstruction processing times (averaged over ten runs) for various Lz are shown in Table 1.
We see that if we use our aFBP reconstruction method, i.e., FBP algorithm with chest thickness information
included, the reconstruction time can be significantly reduced for a person with thin body size. For example, the
chest thickness of a person is estimated as 22 cm (±1 cm) in our experiments, as shown in Figure 4. If we use
it in our aFBP reconstruction, the reconstruction processing time will be reduced from 194.7 seconds to 113.3
seconds, for the 1mm slice interval case. That is a 41.8% reduction in reconstruction time. The DTS image
preparation process will speed up with the help of anatomy and body information.

Figure 5. The first DTS slice from aFBP (left) vs. the 20th slice from FBP algorithm (right).

In addition, for a person with a chest thickness of 22cm, the aFBP reconstruction will produce 220 DTS slices
while the FBP reconstruction will produce 320 slices for a 1 mm slice interval. Fewer DTS slices eliminate poorly
focused slices and less time for interpretation and review by doctors and radiologists. As shown in Figure 5, we
can see lung and rib structures from the first DTS slice produced by the aFBP reconstruction, but for the 320
slices produced by FBP, we still have a blurry image even after we go through the first 20 slices.

3.3 Discussions

In addition to chest thickness, additional anatomical information, e.g., lung thickness and width can be used
to further refine the reconstruction region. For example, the maximum thickness of the lung region of the
Duke anatomical model, as highlighted in blue in Figure 3, is 17.2cm, 4.5cm smaller than the chest thickness
Lz = 21.7cm. If accurate lung depth can be estimated, even fewer DTS slices could be produced and more image
review and interpretation time can be saved. However, additional work needs to be done to deal with large
variations in human lung sizes, deformation issue, etc. We leave that as the future work. In this work, we use
chest thickness as an example to show that our RGB-D camera-based sensing prototype can estimate anatomical
information for DTS reconstruction in an automatic way during a chest X-ray exam.

We performed preliminary experiments to evaluate the real-time performance of the anatomy registration
and chest thickness estimation algorithm. We anticipate that the accuracy of the depth estimate depends on the
RGB-D camera, the distance between the person and camera and the details of the camera calibration. We plan
to perform additional experiments to quantify the accuracy in a future work.
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4. CONCLUSIONS

We develop an anatomy registration prototype using RGB-D cameras to assist chest X-ray acquisition workflow,
and improve DTS reconstruction efficiency. Our experiments show that the 2D lung registration provides real-
time feedback of patient 2D positioning. Our simulation and DTS reconstruction show that the anatomy and
body information can speed up DTS reconstruction, reduce the number of redundant tomosynthesis slices, and
help reduce image interpretation time.
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