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ABSTRACT
Robust 3D pose tracking of an object is a critical technique for
various mobile sensing applications. Computer vision-based pose
tracking method provides a cost-effective solution, but it is sen-
sitive to occlusion and illumination change issues. In this work,
we propose a novel visual-inertial sensor fusion framework and
demonstrate the real-time implementation of a tightly-coupled sen-
sor fusion algorithm: inertial perspective-n-point (IPNP) algorithm.
With measurements from an inertial measurement unit (IMU), the
prototype system only needs to detect two keypoints to track all six
degrees of freedom of a planar object, e.g., a mobile X-ray detector,
a 50% reduction on required number of keypoints, compared with
the vision-based perspective-n-point algorithm.

CCS CONCEPTS
•Computer systems organization→ Embedded and cyber-physical
systems; • Human-centered computing→ Mobile devices.
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1 INTRODUCTION
Object position and orientation estimation is important for vari-
ous mobile sensing applications. In the field of medical imaging,
accurate 3D tracking of medical devices can not only improve the
quality of medical images, but also speed up the imaging workflow,
and even enable autonomous imaging and robotic operations. In
mobile X-ray imaging, accurate pose tracking of the X-ray detector
is a critical technique to a 2D X-ray imaging system, as well as more
innovative 3D tomosynthesis system.

For high-accuracy 3D pose tracking, existing techniques and
systems include motion capturing technique, e.g., Vicon and Opti-
track systems; electromagnetic tracking technique, e.g., trakSTAR
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system, etc. However, the cost of these solutions is prohibitive for
many applications to adopt them. As a low-cost alternative, various
computer vision methods have been developed for augmented real-
ity, robotics and other applications [3]. For example, marker-based
method uses fiducial markers with special patterns, such as ARTag,
AprilTag to identify and locate objects. Visual odometry (VO) and
vision-based simultaneous localization and mapping techniques
do not need any fiducial markers. These feature matching-based
methods can extract features from the environment to track the ego-
motion of the camera [3]. However, both marker-based and feature-
based methods are essentially vision solutions, which are sensitive
to occlusion, light condition changes and image acquisition errors.
To make vision-based pose tracking more robust, visual-inertial
odometry (VIO) [2] combines complimentary inertial measurement
unit (IMU) sensor with visual sensor. As reviewed in [2], some
VIO algorithms use the Kalman filter (KF) or extended Kalman
filter (EKF) framework to integrate these two sensing modalities;
other algorithms use loosely-coupled or weighted average approach.
However, the performance of these methods is affected by motion
dynamic model or weight parameters, and installing cameras on
objects can be intrusive for many applications.

We propose an alternative visual-inertial solution, and develop a
prototype to demonstrate a tightly-coupled sensor fusion algorithm
called inertial perspective-n-point (IPNP) algorithm. The same as
VIO, IPNP also integrates visual and inertial sensors, but it differs
from VIO in the following ways. First, the IPNP algorithm uses
an iterative optimization approach, and it does not rely on any
motion model or weight parameters as in the KF or EKF framework.
Second, a VIO system has both inertial and visual sensors onboard
the object, but we only attach an IMU sensor with Bluetooth con-
nectivity on the object, which is less intrusive and also reduces the
payload on the object. Finally, IPNP significantly reduces required
number of visual keypoints, compared to the classical perspective-
n-point (PnP) algorithm [1] and the five-point visual odometry
algorithm [3], which we describe in details next.

2 METHOD AND SYSTEM
2.1 Sensor Fusion Algorithm
Let x denote the pose vector: x = [θx , θy , θz , tx , ty , tz]

T (orienta-
tion as θ , position as t ), y denote the XY coordinates of the image
markers, i.e., keypoints: y = [x1,y1, x2,y2, · · · , xN ,yN ]T , and let
m represent the model parameters, e.g., the camera intrinsic pa-
rameters, then we use a forward model function y = f (x,m) to
estimate the 2D locations of the image keypoints y, given the pose
x and model parameter vector m.

For the classical perspective-n-point (PnP) algorithm [1], the
forward model f can be formulated as: sp̃ = A[R t]P̃, where s is a
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scale factor, A is the camera intrinsic matrix, e.g., model parameters
in m, [R, t] are rotation matrix and translation vector that contain
the camera extrinsic parameters, i.e., the pose parameters in x,
and p̃ = [x,y, 1]T and P̃ = [X ,Y ,Z , 1]T are augmented vectors by
adding 1 as the last element to the 2D point p = [x,y]T and 3D
point P = [X ,Y ,Z ]T , respectively [1]. Once the forward model is
formulated in this way as a linear matrix equation, a least squares
solution can be used for estimating the pose parameters.

A limitation of the PnP algorithm is that its performance signif-
icantly depends on the robust detection of keypoints. Occlusion,
illumination changes, and errors in correspondences can all lead to
failure of keypoint detection. The IPNP algorithm improves the ro-
bustness of pose estimation by combining orientation information
from an IMU with keypoints from images.

The rotation matrix R relates the world coordinate system to the
camera coordinate system. While the PnP algorithm uses a perspec-
tive projection model to obtain R, we can also use the gyroscope
measurements from an IMU to compute R = Rz (γ )Ry (β)Rx (α),
where α , β and γ are Euler angles about axes x , y and z, respec-
tively. Thus, we can use the orientation measurements from the
IMU in the PnP forward model, if we can calculate the orientation
offset between the IMU and camera systems. Fortunately, we can
obtain the 3D orientation offset during a calibration period when at
least four keypoints are detected by the computer vision algorithm.

(a) Pose estimate from
three keypoints

(b) Pose estimate from
two keypoints

Figure 1: Accurate pose estimation of the top-half of a
square obtained using the IPNP algorithm as indicated in
green overlay for the case with three (a) and two (b) mark-
ers visible (SID indicates the distance from the camera).

Once we use Euler angles to compute the rotation matrix R, we
only need to compute the translation vector t = [tx , ty , tz ]

T in
the forward model. Thus, only two keypoints (XY coordinates) are
required to solve an overdetermined problem. Once we use the
forward model with inertial and visual sensor data to predict the
XY location of all keypoints, i.e., y, we can compute the Jacobian
matrix Ji , j = dyi/dxi and use gradient descent-based method to
solve an optimization problem. For a planar object, a minimum of
four keypoints are required to derive a unique PnP solution [1].
Our IPNP algorithm only requires detection of two keypoints, a
50% improvement in terms of minimum number of keypoints.

2.2 Hardware and Sensors
We use commercial-off-the-shelf visual and IMU sensors to demon-
strate the IPNP algorithm. In order to simplify the detection of

keypoint markers in the camera image, we place an infrared (IR)
filter on top of the lens of a regular camera as our IR camera. We
cut chromatte tape into one inch circles to create retroreflective
markers, and place four markers on the surface of the planar object,
so that the IR camera can easily detect them based on brightness
thresholding. Note that we follow the standard camera calibration
procedure with a checkerboard to calculate the intrinsic camera
parameters. Markers are arranged with specific spacing and in a
pattern such that unique identification of each marker can be per-
formed from the camera view. To ensure PnP accuracy, markers
are far apart enough to create separation by 20 or more pixels in
the camera image at the working distance.

For the IMU sensor, we choose a 9-axis LPMS motion sensor
with Bluetooth connectivity, so we can collect the orientation mea-
surements wirelessly on a laptop. The LPMS sensor provides both
the angular velocity measurements and the orientation measure-
ments, since it has a gyroscope and a magnetometer. While we
can integrate angular velocity to obtain orientation, we choose to
use the orientation measurements directly, and we calculate the
orientation offset between the camera frame and the IMU frame
during the calibration, as discussed in Section 2.1.

3 DEMO DESCRIPTION
We configure the hardware sensor as follows to set up the demo.
We place our IR camera on a fixed location and connect it to our
demo computer. Also connected to the computer is a Bluetooth USB
dongle, from which we can collect the IMU sensor data. We choose
a planar object such as a paper plate as the tracking target. We put
the IMU sensor on one side of the plate, and four retroreflective
markers on the other side.We place four markers following a special
geometric pattern so that we can identify these markers. Note that
keypoint correspondence can be achieved by other ways, such as
feature matching in markerless methods. Our iterative optimization-
based sensor fusion framework works for both marker-based and
markerless methods, and we only demonstrate the fusion of inertial
sensor for the marker-based method.

Before the demo, a simple calibration is performed by placing
the object in front of the camera with all four markers visible to the
camera. After that, users can move the object around in the field of
view of the IR camera, and see the real-time location and orientation
estimate of the object from awindow on the computer. As illustrated
in Figure 1, the green bounding box shows the contour of the planar
object from the orientation estimate, and source-to-image distance
(SID) indicates the estimate of the distance from the camera to
the center of the object. To test the accuracy and robustness of
the IPNP algorithm, users can block certain markers to see if the
demo prototype can still estimate the 3D pose accurately. While
the classical PnP algorithm requires at least four keypoints [1], our
IPNP algorithm works with three and two markers visible to the IR
camera, as shown in Figure 1 (a) and (b), respectively.
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