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ABSTRACT
We demonstrate a non-invasive Wi-Fi sensing system that uses
channel state information (CSI) data and deep neural network
(DNN) models to reconstruct the cross-section images of potato
tubers underground. We design a Wi-Fi mesh network that can
leverage both the space and frequency diversities of the wireless
network. We apply a multi-branch convolutional neural network
(CNN)model to perform data-driven image reconstruction.We have
performed extensive experiments to build a Wi-Fi potato sensing
dataset, and our demo and experimental evaluations show that the
Wi-Fi system outperforms the state-of-the-art root tuber wireless
sensing system in terms of image quality and estimation accuracy.
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1 INTRODUCTION
Non-invasive and accurate biomass sensing is pivotal for effective
crop monitoring and phenotyping in smart agriculture. Although
above-ground biomass sensing has received considerable attention,
below-ground biomass remains challenging to measure and has
thus been comparatively understudied. Wireless sensors represent
a promising approach to underground sensing due to their ability to
“see through” soil, offering a cost-effective and minimally disruptive
method of monitoring root systems. For instance, [4] demonstrated
the feasibility of underground potato tuber imaging using ZigBee
nodes. Received signal strength (RSS) measurements from a Zig-
Bee network were used to reconstruct the cross-section images of
potato tubers underground. However, relying solely on RSS and
limited frequency channels often results in coarse estimates and
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(a) Wi-Fi Mesh Network Deployment (b) Reconstructed Cross-Section

Figure 1: (a) Our experimental testbed with aWi-Fi mesh net-
work surrounding the soil container, and (b) a representative
cross-sectional image reconstructed by our CNN model.

vulnerability to environmental noise, making it difficult to achieve
the spatial resolution required for detailed tuber imaging.

In contrast, Wi-Fi channel state information (CSI) provides a
substantially richer characterization of the wireless channel by cap-
turing both amplitude and phase data across multiple subcarriers.
This fine-grained information is especially beneficial for under-
ground sensing, as it enhances spatial resolution and affords greater
robustness to multipath effects critical factors when signals propa-
gate through dense, heterogeneous media like soil. Beyond mere
power measurements, CSI captures the complicated interactions
of signals as they propagate via multiple paths, thus facilitating
more accurate feature extraction. Recent advances in Wi-Fi sensing
further underscore the advantages of CSI-based approaches. For ex-
ample, FruitSense exploits the wider bandwidth at 5 GHz to isolate
multipath-independent components, directly correlating with phys-
iological changes in fruit ripeness [3]. Similarly, CSI-based human
activity recognition systems leverage detailed subcarrier informa-
tion to significantly improve model generalization, even in varying
environments or with different hardware configurations [2]. These
successes collectively highlight how CSI-based fingerprinting not
only offers superior spatial resolution compared to RSS, but also
provides temporal stability and adaptability to complicated settings.

Motivated by these benefits, we propose a new framework for
underground root tuber sensing that harnesses Wi-Fi CSI data in
conjunction with deep neural network models. Our system com-
prises a dedicated data acquisition testbed-a Wi-Fi mesh network
composed of low-cost sensor nodes and an annotation module that
generates ground truth labels for buried tubers. With these an-
notated CSI measurements, a multi-branch convolutional neural
network (CNN) is trained to reconstruct cross-sectional images of
tubers, accurately capturing both their dimensions and locations.
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Experimental results validate our design, demonstrating that the
proposed method achieves an average structural similarity index
(SSIM) of 0.99 and an intersection over union (IoU) of 0.87. These
findings highlight the efficacy of CSI-based sensing in delivering
high-resolution imaging for underground agricultural applications.

2 SYSTEM AND METHOD
Our framework for underground root tuber sensing comprises two
core components: a custom-developed Wi-Fi mesh network for CSI
data acquisition and a deep neural network (DNN)-based model for
reconstructing cross-sectional images of buried tubers. We detail
each component below.

2.1 Data Acquisition System
We deploy a 2.4GHz Wi-Fi mesh with 12 Seeed Studio ESP32-C3
nodes arranged in a 79 cm × 79 cm square around a 40 cm × 40 cm
container at a 5 cm height (Figure 1a). Each node captures CSI
from 52 subcarriers on three Wi-Fi channels. To synchronize data
acquisition, we adapt the multi-Spin token-passing protocol [1],
wherein nodes transmit beacons at 20Hz in sequence and a sink
node relays all CSI packets to a laptop.

We use a dual-container setup: a larger container has slots for
smaller containers, each holding one tuber. A rotating platform
beneath the larger container periodically changes tuber orienta-
tion for diversity. To mark each tuber, we bury it horizontally so
that its widest cross-section is parallel to the ground, then fix four
rods around it with tops protruding above the soil. A paper marker
shaped like the tuber’s cross-section is placed among the rods to
indicate location and size; once aligned, we remove the rods to
avoid interference. A camera then records the marker from multi-
ple angles as the container rotates, and a segmentation algorithm
isolates the marker region as a binary mask. Minor alignment issues
are corrected via spot checks, ensuring the marker center matches
the tuber’s geometric center.

Each sample includes CSI across three channels. For every sub-
carrier, a 12 × 12 matrix is formed from up to 12 transmitter and
12 receiver antennas, producing 156 matrices (3 × 52 subcarriers).
These are stacked into a (156, 12, 12) tensor that feeds into our
DNN.

2.2 Multi-Branch CNN Model
We employ a multi-branch CNN model, referred to as RadioNet,
to reconstruct high-resolution cross-sectional images of the buried
tubers from the aggregated CSI tensors. The model is composed
of an Encoder and an Imaging Module. The Encoder features
three sets of convolutional layers with progressively larger kernel
sizes to capture both fine-grained local features and broader global
structures. The outputs of these branches are fused element-wise,
flattened, and passed to the Imaging Module.

This imaging module first uses a fully connected layer with
LeakyReLU activation to project the flattened feature map into a
higher-dimensional space. The resulting representation is reshaped,
modulated by an attention mask, and then progressively upsampled
and refined using convolutional layers until the final cross-sectional
image is produced.

3 EVALUATION AND DEMO PLAN
To validate our approach, we have collected CSI data from 26 potato
tubers located at four different positions in pots, and compared it
against the state-of-the-art RSS-based method [4] using 16 ZigBee
nodes across 16 channels, whereas our Wi-Fi system employed
only 12 nodes operating on 3 channels. Datasets were split 85:15
for training and testing. Visual inspection showed that our method
accurately reconstructs tuber shapes, boundaries, and spatial loca-
tions as shown in Figure 1b, whereas the RSS-based reconstructions
suffered from noticeable blurring and loss of detail. Quantitatively,
our custom testbed and multi-branch CNN achieved an average
SSIM of 0.99 and an IoU of 0.87, outperforming the average SSIM
of 0.98 and IoU of 0.86 from the RSS-based method.

Our demonstration will illustrate the entire workflow of our
Wi-Fi CSI-based underground root tuber sensing system, from
hardware setup to real-time image reconstruction. We will first
present our custom-developed Wi-Fi mesh network, consisting
of ESP32-C3 nodes encircling a soil-filled container. A small sur-
face marker confirms tuber placement, and an overhead camera
captures its position for ground truth labeling via image segmen-
tation. We will then show how the collected CSI data is fed into
our multi-branch CNN in inference mode (i.e., without retraining)
to reconstruct cross-sectional root tuber images. A laptop running
our pre-trained DNN model will display the reconstructed images
alongside the marker-based ground truth, allowing attendees to
assess accuracy and view high-resolution results. In summary, our
framework not only demonstrates the efficacy for non-invasively
imaging underground tubers, but also provides the potential for
wide applications in smart-agriculture, such as growth monitoring
and biomass estimation.

4 DISCUSSION
Going forward, we plan to broaden coverage by adding more nodes
and channels to our Wi-Fi mesh network, paving the way for future
3D tuber reconstruction. We also intend to explore robust domain
adaptation strategies to sustain sensing accuracy under diverse soil
and environmental conditions.

5 CONCLUSION
We have developed a Wi-Fi networked sensing system for under-
ground root tuber imaging. We build a Wi-Fi potato sensing dataset
and train a multi-branch CNN model. Our Wi-Fi sensing system
outperforms the existing ZigBee system in terms of image recon-
struction accuracy, while using fewer wireless nodes.
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