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Underground root tuber sensing (RTS) is important for monitoring crop phenotypic traits in crop breeding and other smart
agriculture applications. This paper proposes a novel RTS framework with a radio frequency (RF) sensor network and deep
learning models, demonstrating the “see-through soil” capability of RF sensor networks in underground RTS. We build upon
an RF tomography network system and propose a novel data-driven RTS model, TD-RTS, that uses transformer and diffusion
neural networks for imaging cross-sections of potato root tubers. Furthermore, we propose a biomass sensing model by
combining the transformer network in TD-RTS with a multilayer perceptron (MLP) to estimate the biomass of underground
tubers. To achieve accurate sensing, we use both the frequency and spatial diversities of the networked sensing system in
RTS, and use fade-level to facilitate the selection of RF channels in order to reduce the data processing overhead. We perform
extensive experiments, demonstrating the efficacy of the RTS framework.
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1 Introduction
One significant factor contributing to food insecurity is the potential shortfall in crop yields to meet the demands
of the growing population. Many research institutes are developing techniques required for future food production
and food security without destroying our planet [14, 75]. Plant phenotyping is such an enabling technique that
will contribute to making sustainable agriculture available, and crop biomass is an important phenotypic trait in
crop breeding [56]. While various sensors and methods have been proposed for crop above-ground biomass (AGB)
sensing, sensing techniques for below-ground biomass (BGB), defined as the biomass of live roots excluding fine
roots less than 2 mm in diameter [55], remain largely understudied [8].

While cameras and computer vision techniques have been used to determine the size and shape of leaves, stems
and the overall above-ground architecture of a single plant crop in greenhouse environments [14, 36], RF sensors
provide a potentially cost-effective way of capturing the shape, size and location information of underground
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Fig. 1. Imaging results for (a) a physical RF tomography model [10] in a single-tuber scenario, (b) our DNN model in a
single-tuber scenario, (c) a physical RF tomography model [10] in a double-tuber scenario, and (d) our DNN model in a
double-tuber scenario. Red circles indicate the ground truth of the 2D cross-section areas of the potato root tubers.

roots, e.g., potato tubers, due to their see-through soil capability. For example, [43] uses a ground penetrating
radar (GPR) to detect and reconstruct images of below-ground roots. It proposes a deep neural network (DNN)
to locate the root branches in each 2D GPR sensing slice, and then reconstructs root structures from multiple
scans. However, the sensing range of a GPR sensor is constrained by the field of view of its antennas, and the
applicability is hindered by its high cost. In this paper, we propose an alternative approach, a novel root tuber
sensing (RTS) framework, which uses RF measurements from low-cost RF sensor networks for underground root
sensing of potted plants in greenhouse environments.
The idea of proposing an RTS framework is inspired by RF tomography, a “see-through” sensing technique,

which uses changes in received signal strength (RSS) measurements to detect and track objects even through
walls [72, 83]. The goal of RF tomography is to determine an attenuation image, quantifying the influence caused
by physical objects within the sensing area. While RF tomography was first proposed to detect and track human
beings, different varieties of RF tomography methods were later proposed to retrieve properties of different
objects, such as the inner structure of pillars [49], rice moisture levels [4], etc. However, when we directly use RF
tomography for underground RTS, we find the following changes and issues. First, most previous model-based
RF tomography methods focus on the localization and tracking of targets, whereas root tuber sensing requires
extracting the shape and size information. Moreover, since RF tomography is essentially an ill-posed inverse
problem, the higher the resolution of the reconstructed image is, the more serious the ill-posedness of the
inverse problem would be. Thus, it is challenging for traditional physical model-based algorithms to obtain
fine-grained imaging results. For example, when we apply the attenuation-based RF tomography algorithm [10],
the evaluation metric, structural similarity index (SSIM), only reaches 0.45 (an example image shown in Fig. 1a),
which is far below the result from our data-driven RTS framework. Additionally, RTS requires the capability of
detecting multiple tubers underground. While physical model-based RF tomography methods can detect multiple
targets [44], the imaging quality is further degraded because the effects of multiple targets on RF measurements
are not linear combinations of those of individual targets. As shown in Fig. 1c, two tubers can be vaguely seen
from the reconstructed RF tomography image, and the SSIM score calculated with ground truth is 0.36, even
lower than the single-tuber case.

Second, although data-driven methods have achieved state-of-the-art (SOTA) performance in wireless sensing
and show great potential for sensing underground tubers [46, 65], their performance degrades in dynamic
environments, where environmental changes introduce varyingmulti-path effects onwireless signals. For example,
human activities create time-varying multi-path effects [13] on wireless signals. As shown in Fig. 2, human
activities induce significant short-term fluctuations in RSS measurements, degrading DNN model performance.
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Fig. 2. RSS measurements in different environments: In a static environment, a 2 dB difference in RSS measurements is
shown between scenarios with and without a root tuber. In a dynamic environment, RSS variations of 3 dB and 6 dB are
observed due to environmental changes.

In addition, environmental layout changes also lead to RSS variations [21]. Fig. 2 shows a 2 dB difference in RSS
measurements between scenarios with and without a tuber. However, it also shows variations of 3 dB and 6 dB in
RSS measurements due to environmental layout changes, which can produce false root tuber imaging results.

Third, while multi-frequency sensor data enhance the accuracy of sensing approaches by providing additional
information, they also increase the computational burden of the method and the overhead of the sensing system.
For example, the study in [65] uses RSS measurements from multiple frequency channels, and increasing the
number of channels from 8 to 16 not only doubles the data collection time and power consumption of sensor
nodes, but also increases the deep learning neural network (DNN) model parameters and computation resource
requirements of monitoring devices. Thus, it is important to find a trade-off between sensing accuracy and
adequate channel measurements, especially for long-term underground tuber monitoring on resource-constrained
embedded computing devices.
To solve the issues mentioned above, we propose an RTS framework using an RF sensor network and DNN

models. First, we build upon our data acquisition systemwith a ZigBee sensor network [66], and perform extensive
experiments in various scenarios, e.g., different tuber counts and different environmental conditions, to build
an underground potato root tuber sensing dataset. The dataset includes 58 potato tubers of varying sizes and
shapes. Both the frequency and spatial diversities of the networked sensing system can be used to investigate
how different root tubers affect RF measurements under various positions and environmental conditions.
Second, with the tuber sensing dataset, we propose a two-stage DNN model called TD-RTS to locate under-

ground root tubers and reconstruct their maximum cross-sections using RF measurements from the RF sensor
network. Transformer neural networks have shown greater performance in various fields, such as computer
vision [22, 54] and wireless sensing [53]. By using the self-attention mechanism, they capture the dependen-
cies between different frequency channels [84], allowing the model to learn complex relationships and extract
discriminative features from RSS measurements. Accordingly, TD-RTS combines transformer and convolution
networks for initial imaging in the first stage. In the second stage, a latent diffusion network [74] is used to remove
noise that persists in initial images. Diffusion networks have achieved SOTA performance in various computer
vision tasks, such as image synthesis, restoration, and denoising [24, 34, 41]. In TD-RTS, the diffusion network
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Fig. 3. Overview of the root tuber sensing (RTS) framework. An RF sensor network monitors underground tubers, with
multi-channel RSS measurements collected and input into the sensing model to reconstruct a tuber cross-section image. To
reduce the overhead of the sensing system, a channel selection method is proposed to select channels that are more sensitive
for underground tubers.

encodes 2D images into 1D vectors to perform denoising, reducing memory and computation requirements while
maintaining high performance. Furthermore, we propose a biomass sensing model by combining the transformer
network in TD-RTS with an MLP to estimate the biomass of underground tubers. In addition, we propose a
statistical method and a one-shot fine-tuning method to ensure robust imaging in a dynamic environment. The
statistical method detects environmental changes [37, 69, 80], while the fine-tuning method [76] updates the
neural networks online to maintain robust imaging.
Finally, to reduce the overhead of the sensing system, we propose a channel selection method based on the

fade-level metric of wireless channels [73]. Based on our observations, RF measurements from links operating on
deep fade channels are more sensitive to interference from regions outside the sensing area, whereas those from
links on anti-fade channels are better fitted for underground sensing [30]. Accordingly, we use the fade level of
each frequency channel to select anti-fade channels for underground tuber sensing, thereby reducing the number
of channels used in image reconstruction and biomass estimation. Our experimental results demonstrate the
efficacy of this channel selection method. To the best of our knowledge, this RTS framework is the first RF sensor
network-based framework towards underground tuber imaging and biomass estimation.
In summary, this paper makes the following contributions.

• We propose RTS, an underground root tuber sensing framework with a low-cost RF sensor network. Both
the frequency and space diversities of the RF tomography network are used in the framework, and an
underground potato root sensing dataset is built by our extensive experiments.

• We propose DNN-based models for imaging root tuber cross-sections and estimating root tuber biomass.
The imaging model uses a two-stage neural network to generate fine-grained images of underground
potato tubers, along with an environmental change detection method and a one-shot fine-tuning method
to ensure robust imaging in a dynamic environment.

• We propose a fade-level-based channel selection method to reduce the number of required channels, thereby
improving the efficiency of the networked sensing system, while maintaining high accuracy.

• We perform extensive real-world experiments and evaluate our method using over 900,000 network link
measurements. The proposed DNN models demonstrate superior imaging quality and biomass estimation
accuracy compared to SOTA baselines.
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2 Problem Statement and Overview

2.1 Problem Statement
Considering a two-dimensional sensing area surrounded by 𝑆 RF sensor nodes, an RF tomography network is
formed with𝑀 = 𝑆 (𝑆 − 1) RF links, where the nodes operate on 𝐶 frequency channels. The RSS measured by the
receiving node of link 𝑖 at time 𝑡 on frequency channel 𝑐 can be described as [29]:

𝑦𝑖,𝑐 [𝑡] = 𝑃𝑐 − 𝐿𝑖,𝑐 − 𝐻𝑖,𝑐 [𝑡] + 𝐹𝑖,𝑐 [𝑡] −𝐺𝑖,𝑐 [𝑡], (1)

where 𝑃𝑐 is the transmit power, 𝐿𝑖,𝑐 is the larger scale path loss, 𝐹𝑖,𝑐 is the fading gain, 𝐺𝑖,𝑐 is the measurement
noise, and 𝐻𝑖,𝑐 is the shadowing loss caused by objects blocking the signal propagation path. Note that the
transmit power 𝑃𝑐 is constant for all links operating on the same frequency channel, and the larger scale path loss
𝐿𝑖,𝑐 remains unchanged over time. Therefore, we use a single subscript index for 𝑃𝑐 and two subscript indices for
𝐿𝑖,𝑐 , respectively. By considering all links and channels, we construct the RSS data matrix Y, where each column
corresponds to an RF link and each row represents a frequency channel.

We use an image vector r = [𝑟0, · · · , 𝑟𝑁−1]𝑇 to represent the sensing area, where 𝑁 denotes the pixel number
of the image vector, and 𝑟𝑛 is a measure of the current presence of the target, i.e., root tuber, in pixel 𝑛. Since
the presence of root tubers in the sensing area attenuates and reflects RF signals, based on [83] and [71], the
relationship between the image vector r and the corresponding RSS data can be modeled as:

Y =H(r) + b, (2)

whereH is an observation function and b is the model error and measurement noise.
For root tuber cross-section imaging, we aim to find the inverse function H−1 of H , that is, to use RSS

measurements Y as input to generate the image vector r. Previous works [29, 71, 83] modelH as a linear function
and compute H−1 by solving an inverse problem. As shown in Fig. 1a and Fig. 1c, the physical model-based
method [83] provides a coarse location estimate for underground tubers but struggles to capture fine-grained
information of tuber dimension and shape. Moreover, as the number of tubers increases, the imaging quality
degrades significantly. In this paper, we propose to use a DNN model to learnH−1, the mapping between RSS
data and tuber cross-section images. Specifically, we aim to train a DNN model F : Y → r to estimate the image
vector r:

r̂ = F (Y;Θ), (3)
where r̂ is the estimate of r, andΘ represents the set of neural network parameters, which are iteratively optimized
using various loss functions, as detailed in Section 3. After training, the optimized network F serves asH−1 to
reconstruct cross-section images from RSS data.

2.2 Framework Overview
Fig. 3 provides an overview of the RTS framework, which includes the following modules. First, a data acquisition
testbed is built to collect sensing data and ground truth. The testbed uses an RF sensor network to capture
multi-channel RSS measurements from underground tubers. Additionally, the testbed uses a novel sensing toolkit,
including “plug-and-play” containers and a rotating platform, to enhance the diversity of dimensions and locations
of the underground tubers. Using the testbed, we perform extensive data collection experiments under various
conditions, including the single-tuber case, the double-tuber case, and dynamic environments, thereby building a
comprehensive dataset. Further details of the testbed, experiments, and dataset are provided in Section 4.
Second, a channel selection method is proposed to reduce the overhead of the sensing system. This method

uses the fade-level metric [73] to classify frequency channels into anti-fade and deep-fade categories. Fig. 3
presents a sample of the RSS value histograms from an anti-fade channel, along with the fitted results using the
skew-Laplace function [73], under conditions with and without tubers. The histograms and fitted results show
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Fig. 4. Network architecture of the TD-RTSmodel. “Conv” and “Linear” denote the convolutional and linear layers, respectively.
“Trans Block” represents the transformer block.

noticeable differences under different conditions, indicating that the anti-fade channel provides high sensing
quality for detecting underground tubers. Thus, we use the fade-level-based method to select anti-fade channels
for sensing tubers, reducing data collection time and the computational burden of the sensing model. Further
details of the method are provided in Section 3.2, and additional analysis and results are presented in Section 5.7.
Third, a novel DNN model called TD-RTS is proposed to reconstruct cross-section images of underground

tubers using multi-frequency RSS data. The model consists of multiple components: an environmental change
detection component to identify changes in dynamic environments and update the pre-trained model online, a
feature extraction component to learn high-dimensional features from RSS data, an initial imaging component to
generate cross-section images of underground tubers, and an image optimization component to reduce residual
noise in the imaging results. The architecture of TD-RTS is shown in Fig. 4 and more details are provided in
Section 3.1. Additionally, to address the occasional blurriness of underground tuber edges in reconstructed images,
TD-RTS uses the canny algorithm [11] as a post-processing step to detect edges and define cross-section regions
of tubers. The region bounded by the detected edges is defined as the cross-section area of a tuber, with pixel
values set to 1, while pixels outside this region are assigned a value of 0. This post-processing step facilitates the
use of various evaluation metrics, which are discussed in Section 5.1.1.
Finally, missing data due to wireless interference is a common issue in networked sensing. To address this

issue, we use the most recent packets to perform data imputation in our data preprocessing module. For instance,
when a sensor node fails to receive packets from other nodes, we impute the missing RSS values using the latest
data on the same frequency channel. If all packets in a particular frequency channel are lost, we use the most
recent values within the same channel for imputation.

3 Algorithms
In this paper, we propose two novel algorithms: the TD-RTS model for accurate underground root tuber imaging
and a channel selection method to reduce the overhead of the RF networked sensing system. More details are
discussed below.

3.1 TD-RTS model
3.1.1 The Feature Extraction Component. We propose to use a transformer network [63] tomodel the relationships
between different frequency channels and extract discriminative features from multi-frequency RSS data. Before
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being input into the transformer network, the RSS data vector Y𝑐 on frequency channel 𝑐 is mapped using a
linear projection, and the result is summed with a learnable channel embedding vector, as described by:

F𝑐 = L(Y𝑐 ) + E, (4)

where L represents the linear projection and E represents the learnable channel embedding vector, which is
shared across all frequency channels. Additionally, to generate the global feature for multi-frequency RSS data,
we introduce an additional learnable vector Y0, which has the same dimension as Yc. The output F0, derived
from the linear projection and summation with the channel embedding, is concatenated with outputs from other
channels to form a feature matrix F = [F0, F1, · · · , F𝐶 ].

Subsequently, F is fed into the transformer network. As shown in Fig. 4, this network consists of four transformer
blocks, each containing a self-attention module and a feed-forward module. The self-attention module is a key
component within the transformer block, capturing relationships between different frequency channels and
generating refined attention features for multi-frequency RSS data. Specifically, three matrices Q, K and V are
derived from the input matrix F through linear transformations [63]:

(Q,K,V) = F · (W𝑞,W𝑘 ,W𝑣), (5)

whereW𝑞 ,W𝑘 andW𝑣 are learnable weight matrices. Q and K are used to compute the normalized attention
weight matrix A = S(QK

𝑇

√
𝑑
), where S represents the softmax function and 𝑑 represents the column dimension of

Q and K. The matrix A is used to multiply V, followed by the application of a layer normalization function and a
residual connection to produce the attention feature matrix.

The attention feature matrix is fed into the feed-forward module, followed by layer normalization and a residual
connection to generate the output matrix, which is then input into the next transformer block. Finally, the first
row vector of the output matrix of the last transformer block is used as the global feature and processed through
a linear layer to generate the output of the transformer network.

To further bridge the sensing-to-agronomy gap, the transformer network is also used to directly estimate the
biomass of underground root tubers. Specifically, the features generated by the transformer network are fed
into an additional multilayer perceptron (MLP) for biomass estimation. To further evaluate its performance, we
perform extensive evaluations, with results presented in Section 5.6.

3.1.2 The Initial Imaging Component. To achieve initial imaging of underground tubers, we propose a novel
neural network that incorporates attention and convolution layers. The attention layer adaptively emphasizes
tuber-related features while attenuating irrelevant ones. Specifically, a high-dimensional vector from the feature
extraction component is first fed into a linear layer to adjust its dimension. The output is then reshaped into
a two-dimensional feature map, with its width and height scaled to one-ninth of the dimensions of the target
image. Subsequently, an attention layer, implemented by a learnable weight matrix, adaptively adjusts the feature
map. After that, the feature map is upsampled, increasing both its length and width by a factor of three. A 3 × 3
convolution layer is applied to smooth the interpolated result and maintain consistent feature map dimensions.
Finally, the feature map is upsampled to the target size, and two 1 × 1 convolution layers are used to refine the
output. In this paper, bilinear interpolation [33] is used for all upsampling operations. To enhance the imaging
results, this network is jointly optimized with the network in the feature extraction component using a mean
squared error (MSE) loss function, which is defined as [58]:

𝐿𝑚𝑠𝑒 =
1
𝑈

𝑢=𝑈∑︁
𝑢=1

| |r𝑢 − F𝑖𝑛𝑖 (F𝑒𝑥𝑡 (Y𝑢)) | |2, (6)

where F𝑖𝑛𝑖 denotes the network used in the initial imaging component, F𝑒𝑥𝑡 represents the network used in the
feature extraction component, and𝑈 denotes the number of training samples in a batch.
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3.1.3 The Image Optimization Component. To further optimize the initial imaging result, we propose an image
optimization component implemented using a latent diffusion network. This diffusion network compresses the
initial imaging result into a feature vector and uses this vector to perform the diffusion process, thereby enhancing
imaging quality while reducing model parameters and iterations.
Specifically, the diffusion network first uses an encoder-decoder module to compress the image from the

previous component into a one-dimensional feature vector, which is then decoded to produce a high-quality result.
The structure of the encoder-decoder module follows that proposed by [74], including a prior representation
learning network (PRN) and an Unet-shaped transformer network (UTN). PRN takes the concatenation of an
initial image r̂ and the corresponding ground truth r as input to generate the prior representation z = 𝑃𝑅𝑁 (r̂, r).
The prior representation z is input into UTN along with the image sample r̂ as a dynamic modulation parameter
to denoise the feature map, ensuring the decoding of a high-quality result. In this paper, PRN is implemented
using a ViT network [18]. Both PRN and UTN are first optimized using an MSE loss function.
Subsequently, the diffusion process is applied to the prior representation obtained from PRN to generate z

without relying on the ground truth r. In the forward diffusion process, the prior representation from PRN is
progressively corrupted by Gaussian noise, resulting in a noised result z𝑗 at time step 𝑗 . In the reverse diffusion
process, a denoising network 𝜖 , consisting of linear layers, estimates the noise in z𝑗 . The inputs of 𝜖 are z𝑗 , 𝑗 , and
o, where o is a condition vector used to control the reverse diffusion process. To generate o, we define another
prior representation learning network, 𝑃𝑅𝑁2, which takes only the image r̂ as input. The estimated noise from 𝜖

is used to obtain z𝑗−1 and start the next iteration. After 𝐽 iterations, the estimated result ẑ is obtained and used as
the prior representation, which is fed into UTN along with r̂ to produce the denoised image. We jointly train
𝑃𝑅𝑁2, 𝜖 , and UTN using denoising losses from both 𝜖 and UTN. The mean absolute error (MAE) [70] and MSE
are used as their respective loss functions.
In the inference phase, we begin by extracting a conditional vector o using 𝑃𝑅𝑁2 from a test image sample.

Then, we randomly sample a Gaussian noise z𝐽 , and the denoising network utilizes z𝐽 and o to estimate ẑ after 𝐽
iterations. The ẑ is used as the prior representation to input UTN along with the test image sample to generate a
high-quality result.

3.1.4 The Environmental Change Detection Component. Before feeding RSS data into the DNN model, we use a
statistical method to detect dynamic changes in the environment. When changes are detected, the corresponding
RSS data with significant variations are discarded, and stable data from the new environmental condition are
used to update the pre-trained model. Specifically, we observe that RSS values of most links in the RF sensor
network remain relatively stable under static environmental conditions. However, environmental changes, such
as human activities or alterations in the layout, may cause significantly short-term variations in RSS values, as
shown in Fig. 2. Thus, we propose a statistical method that uses the standard deviation of RSS data within a
sliding window to detect dynamic changes in the environment. For each link on each frequency channel, we first
calculate the standard deviation of RSS data within the sliding window. Subsequently, we rank these deviation
values in descending order and calculate the average of the top-k standard deviations. When the average exceeds
a threshold, it indicates the occurrence of environmental changes at that time. The corresponding RSS data are
discarded, and the system continues monitoring for environmental changes in the subsequent period. Once no
changes are detected, stable RSS data from the new environmental condition are used to fine-tune the pre-trained
model to achieve robust imaging.

Specifically, we propose a one-shot fine-tuning method [76] to adjust the network parameters after detecting
the environmental changes. In practice, the growth rate of root tubers is much slower than the short-term
dynamic changes induced by human activities and alterations in the environmental layout. This indicates that
the dimensions of tubers remain consistent before and after these dynamic changes, and allows us to use the
most recent stable RSS data to fine-tune the pre-trained model without the need to relabel the ground truth.
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(a) Deep-fade channel. (b) Anti-fade channel.

Fig. 5. Histograms of RSS values on deep-fade and anti-fade channels under conditions with and without tubers, along
with fitted results using skew-Laplace [73]. The histograms and fitted results are similar for the deep-fade channel (a), while
noticeable differences are observed for the anti-fade channel (b).

Specifically, when the statistical method detects environmental changes, the neural network parameters of the
feature extraction and initial imaging components are fine-tuned using the most recent stable RSS data from a
single tuber. In the fine-tuning process, the MSE loss function is used to optimize the neural networks, enabling
them to adapt to new environments. Given that the fine-tuning process introduces additional computational cost,
we perform further evaluations using different fine-tuning epochs to analyze the trade-off between fine-tuning
time and sensing performance. The results are presented in Section 5.5.

3.2 Fade-level-based Channel Selection Method
To further reduce the overhead of a multi-channel RF sensor network, we propose a fade-level-based channel
selection method, in which frequency channels are classified from anti-fade to deep-fade based on their fade
levels [73]. Links on deep-fade channels are sensitive to interference from the environment, while links on
anti-fade channels are better fitted for underground tuber sensing [30].

Histograms and fitted results using a skew-Laplace function [73] for RSS values from a deep-fade channel and
an anti-fade channel, with and without tubers, are shown in Fig. 5. We see that the histograms and fitted results
with and without tubers are similar on the deep-fade channel, while noticeable differences are observed on the
anti-fade channel. This indicates that the anti-fade channel is more sensitive to underground tubers and provides
higher sensing quality. Thus, we use the fade level of each channel to select anti-fade channels to reduce the
number of channels.
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(b) Experimental layout (c) Small containers with various tubers.

Fig. 6. The used testbed comprises a ZigBee network with 16 nodes and a through-soil sensing toolkit featuring “plug-and-
play” functionality and data augmentation capabilities. ① TI CC2531 nodes, ② Rotating platform, ③ RGB camera, ④ Marker
with the same dimension as the tuber. ⑤ Small container with the tuber. ⑥ Larger container. Additional small containers
containing potato tubers with various dimensions are shown in (c).

Specifically, we first collect a duration of RSS data under the non-tuber condition and calculate the fade level
of each link on each channel, as formulated in [73]:

𝜂𝑖,𝑐 = 𝑦𝑖,𝑐 −𝑚𝑖𝑛
𝑐∈𝐶

𝑦𝑖,𝑐 , (7)

where 𝑖 and 𝑐 represent the network link and the frequency channel indices, respectively. 𝑦𝑖,𝑐 denotes the mean
RSS value of the link 𝑖 on channel 𝑐 during the data collection period. 𝜂𝑖,𝑐 denotes the fade level of link 𝑖 on
channel 𝑐 , with 𝜂𝑖,𝑐 ≥ 0 for each link on each channel. Subsequently, we calculate the average fade level of the
links on each channel to represent the fade level of the corresponding channel and then sort the channels in
descending order. Finally, we select the top-k frequency channels for data collection from underground tubers,
reducing the overhead of the RF sensor network while maintaining relatively high sensing performance. The
evaluation results are discussed in Section 5.7.
Based on our investigation, although the channel selection method reduces sensing overhead, the selected

channels may vary with changes in soil properties and moisture. This suggests that channel reselection should
be performed as soil conditions change. To address this issue, we propose a scheme that periodically reselects
channels. Specifically, the channels used in the current period are recorded. If the selected channels in the next
period differ from the current ones, they are automatically updated, and the model is retrained using data from
new channels. In practice, the time required for channel reselection and model retraining is much shorter than
the growth period of underground tubers. This ensures that the shapes and positions of tubers remain unchanged
during reselection and retraining. Consequently, the currently obtained imaging results and the data from the new
channels can serve as ground truth and training data, respectively, for retraining the model without requiring
additional data relabeling. Note that, we have performed experiments to investigate the stability of the selected
channels, and more results are discussed in Section 5.7.

4 Experiments and Dataset
Using a multi-channel ZigBee RF sensor network, we perform extensive measurement campaigns and create
an extended version of our previously published dataset [66], referred to as wireless potato sensing (WPS) 2.0.
Further details are discussed below.
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Table 1. Comparison of hardware cost, energy consumption, and sample size among our ZigBee sensor network, a GPR
device [59], and a CT scanner [47].

Cost (USD) Power (W) Battery Mobility Sample Size (KB)
GPR device [59] 39, 950 13.3 Yes Yes 477.27
CT scanner [47] 150, 000 80 × 103 No No 512.00
ZigBee network 10 2.82 × 10−3 Yes Yes 15.00

4.1 Data acquisition testbed
In this paper, we use the testbed proposed in [66], which consists of a ZigBee sensor network with 16 TI CC2531
sensor nodes, a through-soil sensing toolkit, a rotating platform, and an RGB camera, as shown in Fig. 6.

In addition to the ZigBee sensor network, other sensing solutions have been proposed for underground RTS in
recent years. To further demonstrate the advantages of the ZigBee network, we compare it with a GPR system [59]
and a computed tomography (CT) system [47] in terms of hardware cost, energy consumption, and sample size. As
shown in Table 1, we first illustrate the hardware cost of these sensing systems. The GPR system uses a customized
device manufactured by IDS GeoRadar, which generally costs more than standard commercial units, typically
priced at USD 39,950. Moreover, the SIEMENS CT scanner used in [47] is considerably more expensive, with a
used unit costing approximately USD 150,000. In contrast, the ZigBee sensor network used in our framework is
low-cost, with each sensor node costing approximately USD 10. The low-cost advantage of the ZigBee network
allows additional sensor nodes to be deployed with minimal increase in overall cost, enabling larger-scale data
collection and improving adaptability to diverse sensing conditions. Second, we compare these sensing systems
in terms of power consumption and battery support, which serve as indicators of energy efficiency. As shown
in Table 1, each sensor node of the ZigBee network consumes 2.82 mW, substantially lower than 13.3 W and
80 kW consumed by the GPR and CT systems, respectively. The low-power design enables battery operation,
enhancing mobility and providing a longer runtime than the GPR system under equivalent battery conditions.
Third, we compare the sample size of different sensing solutions. Using the ZigBee sensor network with 16
nodes, each RTS network sample size is only 15 KB, which is significantly smaller than the corresponding sample
sizes of the GPR and CT systems. The smaller sample size further accelerates data transmission and reduces
storage requirements. These results demonstrate the superiority of our framework and highlight its practicality
for real-world deployment. Note that we have tested using a subset of the 16 wireless nodes in our evaluation, as
discussed in Section 5.8.

4.2 Experiments
We use the testbed with different configurations to perform measurement campaigns in various environments
and conditions, and build an extended version of our previously published dataset [66], referred to as WPS 2.0.
Table 2 lists all experiments in the measurement campaigns.

In Exp. 1, we perform experiments in a single-tuber case. The ZigBee nodes are deployed on a rack measuring
72 cm × 72 cm. We collect RSS data from 26 potato tubers, with lengths and widths shown in Table 2. The potato
tubers weigh between 66.4 g and 209.8 g and are buried in a plastic container measuring 40 cm × 40 cm × 40
cm, with depths ranging from 11 cm to 13.5 cm. We rotate the platform 32 times for each tuber, positioning it
at different angles and locations within the sensing area. In total, we collect RSS data with 832 unique tuber-
position annotations, each corresponding to 40 seconds of RSS link measurements. The evaluation results for the
single-tuber case are discussed in Section 5.3.
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Table 2. Three sets of experiments to build WPS 2.0: imaging potato tubers in a single-tuber case, imaging potato tubers in a
double-tuber case, imaging potato tubers in an environment with changes. A total of 922,384 RF sensor network measurements
and 873 ground truth annotations are collected in these experiments.

Experiment Tuber Dimensions
(LxWxT) (cm)

RF network
area (cm)

No. of
tubers

No. of
positions

No. of RF
Measurements Description

Exp. 1 L:5.3-9.5 W:4.5-6.5
T:4.0-6.4 72×72 26 32 822,608 Imaging of potato tubers in

a single-tuber case.

Exp. 2 L:9.0-14.0 W:6.0-9.0
T:N/A 60×60 6 2 46,016 Imaging of potato tubers in

a double-tuber case.

Exp. 3 L:2.0-10.0 W:1.0-8.0
T:1.5-6.3 72×72 26 1 53,760 Imaging of potato tubers in

dynamic environments.

In Exp. 2, we perform experiments in a double-tuber case, with ZigBee nodes deployed in a 60 cm × 60 cm
area. We collect RSS data from 6 tubers, with their lengths and widths provided in Table 2. During data collection,
we randomly select two tubers and bury them at two predefined locations within the sensing area. In total, we
use 15 tuber pairs and collect RSS data for 4 minutes per pair. The evaluation results for the double-tuber case are
discussed in Section 5.4.
In Exp. 3, we perform experiments in dynamic environments. The ZigBee network is deployed in an indoor

room, with the sensing area set to 72 cm by 72 cm. RSS data are collected from 26 potato tubers, with their
dimensions presented in Table 2. These tubers are placed in a predefined position within the sensing area, with
depths ranging from 10.7 cm to 15.5 cm. First, we collect RSS data from 26 potato tubers in the initial environment.
Second, we randomly select five tubers with varying dimensions to collect RSS data in dynamic environments,
enabling the evaluation of the sensing model. Specifically, during data collection, we continuously change the
layout of the environment by moving furniture around the sensing area. Concurrently, human activities such as
walking and replacing small containers are performed. We use 𝐸1 ∼ 𝐸4 to represent four continuously changing
environments, respectively: 𝐸1 represents the initial environment, 𝐸2 represents the environment after moving a
paper box, 𝐸3 represents the environment after placing a chair around the sensing area, and 𝐸4 represents the
environment after swapping the positions of the chair and the paper box. Overall, we construct three datasets
from 5 potato tubers in three dynamic environments, along with an additional dataset from 26 potato tubers
collected in the initial environment. Each dataset contains one minute of RSS data for each tuber. The evaluation
results under dynamic environmental conditions are presented in Section 5.5.

Compared with the previously published dataset [66], WPS 2.0 includes data from greenhouse environments
and multi-tuber scenarios, serving as an extension of the original dataset. Moreover, we collect RSS data from
observation experiments to analyze the stability of the channel selection method, and from outdoor environments
to evaluate the feasibility of our framework for outdoor deployments, with details provided in Sections 5.7 and
5.9, respectively. Note that our dataset is publicly available at http://zenodo.org/records/17477040.

4.3 Dataset Description
Our dataset contains over 900,000 ZigBee network measurements and over 800 ground truth annotations. We
describe them in detail next.

4.3.1 Ground Truth Annotation. In contrast to the annotation method presented in [66], we propose a more
accurate method for generating ground truth, as follows.
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Table 3. Parameters used in the diffusion network.

Parameter description Default Value

The learning rate of the diffusion neural network. 1𝑒−4
The input dimension of a training or testing sample. 16 × 240
The output dimension of a reconstructed image. 360 × 360

The number of layers used in UTN in the diffusion neural network. 8
The number of transformer blocks used in UTN in the diffusion neural network. 16
The number of attention heads used in UTN in the diffusion neural network. 32

The number of layers used in ViT (as PRN and 𝑃𝑅𝑁2 in the diffusion neural network). 4
The number of attention heads in ViT (as PRN and 𝑃𝑅𝑁2 in the diffusion neural network). 8

The patch size in ViT (as PRN and 𝑃𝑅𝑁2 in the diffusion neural network). 18

First, the potato tuber is placed horizontally in a smaller container with soil, ensuring that its maximum
cross-section remains parallel to the ground. One end of four sticks is inserted into the soil and fixed around the
tuber, with the other end exposed above the soil surface, as shown in Fig. 6c. A marker with the same dimension
as the potato tuber is placed on the soil surface within the region surrounded by the sticks, indicating the position
and dimension of the underground potato tuber. When the potato tuber and container are rotated on the platform,
a camera at a fixed location captures RGB images. An image segmentation algorithm [32] is then used to segment
the pixels of the marker in the RGB image. Second, we establish a two-dimensional coordinate system for the
sensing area, and the pixels corresponding to the marker in the RGB image are converted into coordinates within
this system, representing the coordinates of the tuber cross-section in the sensing area. Third, we construct a
ground truth image, where each pixel corresponds to a region in the two-dimensional coordinate system. Pixels
corresponding to the coordinates of the tuber cross-section are assigned a value of 1, while all other pixels are
assigned a value of 0.

4.3.2 ZigBee data. As shown in Table 2, we collect RSS data in three experiments. In Exp. 1, we record RSS data
from 832 tuber-position pairs, generating 822,608 measurements with different frequency channels. In Exp. 2, we
focus on a double-tuber case and collect a total of 46,016 ZigBee network measurements. In Exp. 3, the dataset
can be divided into four subsets. The first subset contains RSS data from 26 fixed-position potato tubers in the
initial environment, with a total of 34,016 network measurements. The second, third, and fourth datasets focus
on environmental changes, which commonly occur in practical monitoring scenarios. RSS data are collected from
5 fixed-position potato tubers, resulting in a total of 19,744 network measurements across these datasets.
In all experiments, we use 58 potato tubers with varying shapes and dimensions, ensuring the diversity of

potato tubers in the dataset. A total of 922,384 network measurements are collected.

5 Evaluation
To evaluate our TD-RTS model, we perform extensive experiments and use various metrics to assess imaging
quality and biomass estimation accuracy for underground tubers. Furthermore, we compare its performance with
that of different baseline models. More details are provided below.

5.1 Metrics and Model Parameters
5.1.1 Evaluation Metrics. We assess the imaging performance of TD-RTS using four metrics: structural similarity
index (SSIM) [67], intersection over union (IoU) [20], equivalent diameter error (EDE) [7], and relative pixel
difference (RPD). SSIM, ranging from 0 to 1, is a popular metric to quantify imaging quality, with higher values
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indicating better reconstruction. IoU quantifies the similarity between the reconstructed cross-section image
and its ground truth, accounting for both position and shape accuracy. It ranges from 0 to 1, with a higher value
indicating greater similarity. EDE calculates the diameter of a circle whose area equals the absolute difference
between the reconstructed and ground truth cross-section areas. In addition, we define RPD as the ratio of the
pixel count difference between the reconstructed and ground truth cross-sections to the total pixel count of the
ground truth cross-section. Both EDE and RPD quantify the accuracy of tuber cross-section reconstruction, with
smaller values indicating better performance. Using the post-processing step described in Section 2.2, we can
obtain the pixel counts for both the reconstructed and the ground truth cross-sections through simple summation.
The cross-section area is subsequently obtained by multiplying the number of pixels by the real-world area
represented by each pixel.

To assess biomass estimation performance, we use mean absolute error (MAE) [70], mean absolute percentage
error (MAPE) [6], and root mean squared error (RMSE) [12] as evaluation metrics. First, MAE quantifies the
average absolute difference between the estimated and true values, where lower MAE values indicate higher
estimation accuracy. Second, MAPE expresses the absolute difference as a proportion of the true value, providing
a more intuitive measure of estimation accuracy. Lower MAPE values correspond to higher accuracy. Third,
RMSE computes the square root of the mean squared differences between the estimated and true values. It is
widely used in estimation tasks because of its sensitivity to outliers [26]. Smaller RMSE values indicate better
performance, with zero representing perfect estimation.

5.1.2 Model Parameters. To extract discriminative features for imaging, we use a transformer network with four
transformer blocks, each containing a self-attention module with four attention heads and a feed-forward module
composed of two linear layers. The output dimensions of the linear layers in the feed-forward module are set to
1024 and 256, respectively. The linear projection of the RSS data for each frequency channel is implemented using
a linear layer with an output dimension of 256. The learnable channel embedding is implemented using a weight
matrix with a dimension of 1× 256. A linear layer with an output dimension of 1024 is used to generate the output
of the transformer network. To further enhance imaging quality, a latent diffusion network is used, with its
parameters listed in Table 3. To detect environmental changes, RSS data from 400 links on all frequency channels
are used to calculate the average standard deviation. GELU is used as the activation function for the transformer
network, while ReLU is used for the diffusion network and the network of the initial imaging component.
To perform biomass estimation, we employ a transformer network with eight blocks, each containing a self-

attention module with a single attention head. The feed-forward module in each transformer block consists of
two linear layers, each with an output dimension of 256. The output of the transformer network has a dimension
of 256 and serves as the input to a two-layer MLP for biomass estimation, with hidden and output dimensions of
64 and 1, respectively.

5.2 Baselines
For comparison, we choose two SOTA data-driven imaging models as baselines [27, 46]. First, CNN-UNet [27]
proposes a two-stage convolution neural network (CNN) for image reconstruction from RF data. The first stage
uses a multilayer convolution network to generate initial images from measured data, while the second stage,
relying on a UNet network [85], acts as a post-processing module to enhance the quality of the reconstructed
image. Second, LSTM-UNet [46] captures relationships across frequency channels using an LSTM network [25]
and generates high-dimensional features, which are fed into a UNet network to produce imaging results.
In addition, we select two SOTA biomass estimation models as baselines for comparison. The CNN-GRU

model [64] combines a convolution neural network with a gated recurrent unit (GRU) network [15] for feature
extraction, followed by fully connected layers for estimation. The CNN-Transformer model [19] first uses a
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TD-RTS
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UNet[27]

LSTM-
UNet [46]

Single-tuber Double-tuber Dynamic Fade level

Fig. 7. Visualization results for different models and sensing scenarios. Each row corresponds to a method, while each column
corresponds to a sensing case. “Dynamic” refers to using different models for imaging underground tubers in dynamic
environments. “Fade level” indicates the use of the fade-level-based channel selection method to select three frequency
channels for reconstructing images of underground tubers in the single-tuber scenario. Red circles indicate the ground truth
of the 2D cross-section areas of the potato tubers.

Table 4. Performance of TD-RTS in the single-tuber and double-tuber cases. We mark the best and second-best results using
bold and underlined text, respectively.

Method
Case Single-tuber case Double-tuber case

SSIM↑ RPD↓ IoU↑ EDE(cm)↓ SSIM↑ RPD↓ IoU↑ EDE(cm)↓
CNN-UNet [27] 0.99 0.13 0.82 2.48 0.98 0.06 0.93 3.47
LSTM-UNet [46] 0.95 0.23 0.73 3.34 0.80 0.11 0.83 3.97

TD-RTS 0.99 0.08 0.86 2.01 0.99 0.05 0.94 3.05

convolution neural network to extract local features from input data, which are then fed into a transformer
network for global feature extraction and estimation.
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Table 5. Leave-k-out performance of TD-RTS in the single-tuber case. The variable “k” represents the number of test tubers.
The best and second-best results are indicated in bold and underlined text, respectively.

Method

k value k=1 k=2 k=3 k=4
SSIM↑ RPD↓ IoU↑ SSIM↑ RPD↓ IoU↑ SSIM↑ RPD↓ IoU↑ SSIM↑ RPD↓ IoU↑

CNN-UNet [27] 0.98 0.05 0.89 0.98 0.21 0.82 0.98 0.10 0.84 0.98 0.10 0.84

LSTM-UNet [46] 0.93 0.19 0.76 0.93 0.29 0.73 0.93 0.21 0.73 0.92 0.13 0.78

Ours 0.99 0.03 0.90 0.99 0.20 0.82 0.99 0.09 0.88 0.99 0.10 0.87

(a) k=1 (b) k=2 (c) k=3 (d) k=4

Fig. 8. Average EDE results in the single-tuber case for leave-k-out cross-validation with varying k values. The variable “k”
represents the number of test tubers. “C-UNet” and “L-UNet” represent the CNN-UNet model [27] and the LSTM-UNet
model [46], respectively.

Table 6. Computational cost of the TD-RTS model on different computing platforms, evaluated on a single RTS network
sample and averaged over five runs.

Parameters (MB) FLOPs (G) Power (W) Energy (J) Inference Time (S)
4090 GPU 71.16 25.53 79.17 37.35 0.47

10875H CPU 71.16 25.53 26.25 28.80 1.10
Jetson Nano 71.16 25.53 3.17 6.07 1.91

5.3 Performance in Single-tuber Case
First, we evaluate the performance of TD-RTS in the single-tuber case, where RSS data are collected from 26
potato tubers with varying dimensions and positions. We split tuber-position pairs in a 9:1 ratio for training
and testing. As shown in the first column of Fig. 7, the visualization result of TD-RTS outperforms those of
baseline models in both imaging quality and detection accuracy. As reported in Table 4, TD-RTS achieves an
average SSIM value of 0.99, outperforming LSTM-UNet [46], which achieves 0.95. Moreover, TD-RTS achieves an
average IoU value of 0.86, surpassing the 0.82 and 0.73 obtained by the baseline models. In addition, TD-RTS
achieves average RPD and EDE values of 0.08 and 2.01, respectively, both lower than those of CNN-UNet [27]
and LSTM-UNet [46]. Compared to LSTM-UNet [46], TD-RTS employs a two-stage neural network and uses a
diffusion network as the post-processing component to enhance imaging quality and improve detection accuracy
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(a) Sensor network (b) Saliency map (c) Estimation result

Fig. 9. Visualizations showing how the model maps RSS measurements to tuber locations and shapes. (a) The sensor network,
in which each link weight represents the saliency of its RSS measurement, indicates that RSS measurements from links
passing through or surrounding root tubers play a particularly critical role in imaging. (b) The saliency map, which quantifies
the relevance of RSS measurements from all links to the estimation results, indicates that the sensor network produces
distinct patterns for tubers located at different positions. (c) The reconstructed 2D cross-section images generated by TD-RTS,
with red circles indicating the ground truth of the tuber cross-section areas.

for tubers of varying sizes and positions. Although CNN-UNet [27] also adopts a two-stage network, the diffusion
network provides superior image refinement compared to the convolution network, further improving imaging
quality and accuracy.

Second, we perform a leave-k-out evaluation using RSS data from 26 tubers, with k set to 1, 2, 3, and 4. As shown
in Table 5, TD-RTS consistently achieves SSIM values above 0.98 across various configurations, demonstrating its
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ability to generate high-quality cross-section images. In addition, TD-RTS outperforms the baseline models in
terms of RPD and IoU, achieving average values of 0.11 and 0.87, respectively, across different configurations. As
illustrated in Fig. 8, we also compare the EDE values obtained by different models. Our model exhibits lower EDE
values in each sensing scenario compared to baseline models. These results not only demonstrate improvements
over baseline models but also highlight the capability of TD-RTS for accurate imaging.
Third, to assess the feasibility of TD-RTS for real-time, low-power deployment, we evaluate its model size,

floating-point operations (FLOPs), inference time, and energy consumption on three computing platforms: an
NVIDIA RTX 4090 GPU, an Intel 10875H CPU, and an NVIDIA Jetson Nano edge device. Specifically, an RTS
network sample comprising RSS measurements is used for evaluation, and the results are averaged over five
runs. As shown in Table 6, inference on the RTX 4090 GPU is the fastest, requiring 0.47 seconds per sample
and demonstrating the feasibility for real-time deployment. Inference on Jetson Nano is the slowest, taking 1.91
seconds per sample. However, Jetson Nano exhibits significantly lower power and energy consumption than
the RTX 4090 GPU, demonstrating the feasibility for low-power deployment. In practice, although the inference
time on Jetson Nano exceeds 1.9 seconds per sample, it remains significantly faster than the growth rate of
underground tubers, confirming the practicality of TD-RTS for in-field deployment. In addition, the inference
time and energy consumption on the Intel 10875H CPU fall between those of the RTX 4090 GPU and the Jetson
Nano device, highlighting the versatility of TD-RTS across deployment platforms.
Fourth, to further enhance the interpretability of TD-RTS, we use saliency maps [62] to reveal how the

model maps RSS measurements to tuber locations and shapes. In addition, since saliency maps demonstrate
the contributions of RSS measurements from different wireless links to the reconstructed results, we use these
contributions as link weights to visualize the mesh sensor network, highlighting the links that most influence
the reconstruction. Specifically, an RTS network sample, comprising RSS measurements from distinct wireless
links, is first fed into TD-RTS to generate a reconstructed image. The canny algorithm [11] is then used to detect
edges in the reconstructed result, and the region enclosed by these edges is defined as the region of interest (ROI),
corresponding to the cross-section area of the underground tuber. The estimated pixel values within ROI are
used to compute the saliency of each RTS sample element. Finally, the saliency results of different RTS sample
elements are assigned as link weights to visualize the mesh sensor network, highlighting the links most relevant
to ROI. Fig. 9 shows three randomly selected imaging results, along with their corresponding saliency maps
and mesh sensor networks. As shown in Fig. 9, when underground tubers are located at different positions,
different RTS sample elements contribute most to estimating their locations and shapes. Moreover, using saliency
results as link weights reveals that links passing through or surrounding tubers have the greatest impact on
estimation. In summary, these results indicate that links are strongly affected by the locations and shapes of
underground tubers, producing distinct RTS patterns captured by TD-RTS. The model then maps these patterns
to tuber cross-section images.

5.4 Performance in Double-tuber Case
We evaluate the performance of TD-RTS in a double-tuber case, where RSS data are collected from tubers of
varying dimensions placed at two fixed positions. We use a ratio of 9:1 to split the dataset for training and
testing. As shown in the second column of Fig. 7, TD-RTS exhibits higher imaging quality and detection accuracy
compared to the LSTM-UNet model [46]. Although both models capture relationships between frequency channels
for imaging, the transformer network in TD-RTS is more effective than the LSTM network, and the diffusion
network successfully removes residual noise, generating a more accurate result. Moreover, as shown in Table 4,
TD-RTS outperforms the baseline models. For example, TD-RTS achieves an average IoU value of 0.94, surpassing
the 0.93 and 0.83 obtained by baseline models. In addition, TD-RTS achieves an average EDE value of 3.05,
reflecting improvements of 13.77% and 23.17% compared to CNN-UNet [27] and LSTM-UNet [46]. Note that we
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(a) Environment 1 (b) Environment 2 (c) Environment 3 (d) Environment 4

Fig. 10. Average EDE values for various methods under different environmental conditions. “C-UNet” and “L-UNet” represent
the CNN-UNet model [27] and the LSTM-UNet model [46], respectively.

Table 7. Performance of DNN models in a dynamic environment. 𝐸1 ∼ 𝐸4 denote different environmental conditions. We
mark the best and second-best results using bold and underlined text, respectively.

Test Method Leave-1-Out Leave-2-Out Leave-3-Out Leave-4-Out

SSIM↑ RPD↓ IoU↑ SSIM↑ RPD↓ IoU↑ SSIM↑ RPD↓ IoU↑ SSIM↑ RPD↓ IoU↑

𝐸1 → 𝐸1

CNN-UNet [27] 0.98 0.15 0.86 0.97 0.18 0.84 0.98 0.18 0.84 0.97 0.20 0.80
LSTM-UNet [46] 0.85 0.13 0.77 0.85 0.18 0.77 0.83 0.19 0.73 0.84 0.17 0.78

TD-RTS 0.99 0.11 0.90 0.99 0.15 0.87 0.99 0.15 0.87 0.99 0.14 0.88

𝐸1 → 𝐸2

CNN-UNet [27] 0.97 0.21 0.80 0.95 0.27 0.76 0.96 0.22 0.79 0.95 0.26 0.71
LSTM-UNet [46] 0.86 0.13 0.77 0.85 0.21 0.75 0.82 0.19 0.74 0.83 0.21 0.77

TD-RTS 0.99 0.12 0.88 0.98 0.19 0.84 0.96 0.21 0.83 0.98 0.25 0.80

𝐸2 → 𝐸3

CNN-UNet [27] 0.95 0.25 0.78 0.92 0.25 0.76 0.93 0.20 0.80 0.88 0.22 0.75
LSTM-UNet [46] 0.85 0.11 0.77 0.85 0.20 0.76 0.82 0.18 0.74 0.82 0.16 0.78

TD-RTS 0.98 0.12 0.88 0.98 0.19 0.84 0.98 0.19 0.84 0.98 0.28 0.79

𝐸3 → 𝐸4

CNN-UNet [27] 0.95 0.19 0.80 0.92 0.25 0.75 0.92 0.23 0.76 0.87 0.29 0.69
LSTM-UNet [46] 0.85 0.18 0.74 0.84 0.27 0.70 0.82 0.22 0.71 0.83 0.18 0.75

TD-RTS 0.98 0.12 0.88 0.98 0.19 0.84 0.96 0.20 0.84 0.97 0.28 0.79

perform experiments in the double-tuber case to show the efficacy of TD-RTS for multi-tuber sensing scenarios,
and we leave more evaluations of multi-target sensing as future work.

5.5 Performance in Dynamic Environments
To assess the robustness of our TD-RTS model, we continuously modify the environmental layout by randomly
moving furniture three times during data collection. After detecting changes and removing noisy values, stable
RSS data are recorded from four environmental conditions, denoted as 𝐸1 to 𝐸4. We use RSS data from 𝐸1 to
build a pre-trained model, which is then fine-tuned and tested on 𝐸2 ∼ 𝐸4. During fine-tuning and testing, we
select one tuber to fine-tune the pre-trained model and use the remaining four tubers for leave-k-out evaluations,
where k ranges from 1 to 4. The third column of Fig. 7 shows visualization results generated by TD-RTS and
the baseline models. Compared to LSTM-UNet [46], TD-RTS achieves higher detection accuracy and imaging
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Table 8. Imaging performance and fine-tuning time across different fine-tuning epochs and leave-k-out scenarios. The best
and second-best results are highlighted in bold and underlined text, respectively.

Epochs Leave-1-Out Leave-2-Out Leave-3-Out Leave-4-Out

RPD↓ IoU↑ Time(S)↓ RPD↓ IoU↑ Time(S)↓ RPD↓ IoU↑ Time(S)↓ RPD↓ IoU↑ Time(S)↓
5 0.18 0.85 3.19 0.22 0.82 3.66 0.23 0.81 3.80 0.26 0.79 3.85
25 0.12 0.88 15.91 0.18 0.84 18.15 0.20 0.83 18.96 0.27 0.79 18.94
50 0.12 0.88 30.11 0.18 0.84 36.22 0.20 0.83 36.97 0.27 0.80 37.34
75 0.11 0.88 44.65 0.18 0.85 54.91 0.20 0.83 55.52 0.27 0.80 55.46
100 0.11 0.88 59.88 0.18 0.85 72.08 0.20 0.83 73.66 0.27 0.80 73.60
150 0.11 0.89 91.52 0.18 0.84 107.95 0.20 0.83 110.75 0.27 0.79 112.80

quality. Although TD-RTS and CNN-UNet [27] exhibit similar imaging quality, TD-RTS achieves higher detection
accuracy after fine-tuning.
Table 7 presents the SSIM, RPD, and IoU values of TD-RTS compared with the baseline models. TD-RTS

achieves average RPD values of 0.14, 0.19, 0.20, and 0.20 for four environmental conditions, which are lower than
those reported by CNN-UNet [27]. Meanwhile, TD-RTS achieves an average IoU of 0.85 across four environments
and four evaluation ratios, outperforming the values of 0.74 and 0.79 reported by LSTM-UNet [46] and CNN-
UNet [27], respectively. In addition, Fig. 10 illustrates the average EDE values across four evaluation ratios for
each environment. TD-RTS exhibits lower EDE values for most environments compared to the baseline models.
These evaluation results demonstrate the efficacy of TD-RTS in achieving robust imaging under environmental
changes. Compared to baseline models, TD-RTS uses a one-shot fine-tuning method to update model parameters
in dynamic environments, ensuring that it can automatically adapt to new environmental conditions.

Given that the fine-tuning process introduces additional computational cost, the one-shot fine-tuning method
updates only a subset of TD-RTS parameters for 50 epochs, requiring 35.81 seconds on average on an NVIDIA
RTX 4090 GPU. To further evaluate the trade-off between fine-tuning time and sensing performance, we perform
additional evaluations using different fine-tuning epochs, with results shown in Table 8. As expected, fine-tuning
time increases with the number of epochs. Across four scenarios, fine-tuning takes an average of 3.67 seconds for 5
epochs and 35.81 seconds for 50 epochs. However, fine-tuning for 50 epochs achieves better imaging performance,
and the total time remains below 40 seconds, which is much shorter than the growth period of underground root
tubers. In addition, fine-tuning for 50 epochs achieves performance comparable to that obtained with a larger
number of epochs, yielding an average IoU value of 0.84 across four evaluation scenarios. In practice, too few
epochs may prevent the model from learning adequately, resulting in underfitting and poor adaptation to new
environmental conditions. Conversely, too many epochs can lead to overfitting, reducing model stability and
increasing fine-tuning time. Our setting not only reduces fine-tuning time but also maintains effective imaging.

5.6 Performance on Biomass Estimation
In this study, we combine the proposed transformer network with an MLP network for biomass estimation.
First, we perform a leave-k-out evaluation using RSS data from 26 tubers, where k is set to 2 and 3. As shown
in Table 9, the proposed model achieves average MAE values of 10.04 and 12.21 for the two configurations,
respectively, both lower than those achieved by the baseline models. Moreover, it achieves superior MAPE values
in each configuration, reaching 8.70% and 9.75%, respectively. In addition, although RMSE values of all models
increase with the number of test tubers, the proposed model consistently achieves the best performance across
configurations. These results not only demonstrate the efficacy of the proposed model in biomass estimation
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Table 9. Leave-k-out performance for biomass estimation. The variable “k” represents the number of test tubers. The best
and second-best results are indicated in bold and underlined text, respectively.

Method
Leave-k-Out Leave-2-Out Leave-3-Out

MAE (g)↓ MAPE(%)↓ RMSE (g)↓ MAE (g)↓ MAPE(%)↓ RMSE (g)↓
CNN-GRU [64] 15.87 10.74 18.59 17.54 13.42 20.95

CNN-Transformer [19] 10.55 9.32 12.77 12.96 11.30 15.28
Ours 10.04 8.70 12.04 12.21 9.75 14.60

(a) MAE (g) (b) MAPE (%) (c) RMSE (g)

Fig. 11. MAE, MAPE, and RMSE performance in estimating biomass of underground root tubers placed at different positions.
“C-GRU” and “C-Trans” denote the CNN-GRU [64] model and the CNN-Transformer [19] model, respectively.

but also highlight the generalizability of the proposed transformer network. Compared with the CNN-GRU
model [64], the proposed model employs a transformer network to extract discriminative features from RSS
data, which leverages the attention mechanism to adaptively capture information relevant to biomass. Although
the CNN-Transformer [19] model also employs a transformer network for feature extraction, it only uses the
transformer network to derive global representations from local features obtained by the convolution neural
network, neglecting the relationships among different frequency channels. In contrast, the proposed model applies
the attention mechanism to explicitly capture relationships across channels, providing more comprehensive
representations for biomass estimation.

Furthermore, we evaluate the estimation performance for underground tubers at random positions. Specifically,
RSS data are collected from 26 tubers placed at 32 positions, and the tuber-position pairs are randomly split in a
9:1 ratio for training and testing. As shown in Fig. 11, the proposed model outperforms the baseline models across
all evaluation metrics. For example, the proposed model achieves average MAE and RMSE values of 9.74 and
16.91, respectively, outperforming the baseline models. These results further verify the efficacy of the proposed
model for accurate biomass estimation. In addition, existing models use separate networks for imaging and
biomass estimation, while our model employs the same transformer network architecture for both tasks, further
demonstrating its efficacy and generalizability.

5.7 Performance on Channel Selection
In this study, we propose a fade-level-based channel selection method to reduce the overhead of the sensing
system. First, we perform experiments to analyze the feasibility of selecting anti-fade channels for imaging



22 • Wang et al.

(a) Deep-fade channel. (b) Anti-fade channel.

Fig. 12. RSS values from the same link on different channels with different fade levels. The variation of RSS on a deep-fade
channel (a) is higher than that on an anti-fade channel (b), and the fade level of channel 26 is higher than that of channel 13.
The link measurements on deep-fade channels have low sensing quality and will not be selected in RTS.

Table 10. Performance of using different frequency channels. We mark the best and second-best results using bold and
underlined text, respectively.

Method

No. channels One frequency channel Three frequency channels All frequency channels
SSIM↑ RPD↓ IoU↑ EDE↓ SSIM↑ RPD↓ IoU↑ EDE↓ SSIM↑ RPD↓ IoU↑ EDE↓

CNN-UNet [27] 0.98 0.13 0.82 2.47 0.98 0.15 0.81 2.63 0.99 0.13 0.82 2.48

LSTM-UNet [46] 0.85 0.37 0.59 4.09 0.86 0.33 0.62 3.83 0.95 0.23 0.73 3.34

TD-RTS 0.99 0.11 0.84 2.27 0.99 0.10 0.85 2.14 0.99 0.08 0.86 2.01

(a) MAE (g) (b) MAPE (%) (c) RMSE (g)

Fig. 13. MAE, MAPE, and RMSE performance in biomass estimation using different numbers of frequency channels. “Fade”
refers to using the three channels selected by our fade-level method for biomass estimation, while “Ours” refers to using all
16 channels. “C-GRU” denotes the CNN-GRU [64] model, which also uses 16 frequency channels for biomass estimation.

underground tubers. As shown in Fig. 12, the RSS values of the same link on the anti-fade channel are more stable
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(a) Loose soil (b) Compacted soil (c) Fertilized soil

Fig. 14. Different conditions of soils used to observe the stability of channel selection under different soil properties.

than those on the deep-fade channel. This indicates that RSS variations are higher on the deep-fade channel,
resulting in lower sensing quality.

Subsequently, we compare the imaging performance of using different numbers of frequency channels. Specifi-
cally, RSS data from a single channel and three channels selected by our method are used to perform underground
tuber imaging. As shown in Table 10, the performance of TD-RTS improves as the number of channels increases.
However, the performance using 3 frequency channels is comparable to that achieved with 16 frequency channels.
For example, the SSIM value obtained using 3 channels is the same as that obtained using 16 channels. The
difference in IoU values between using 3 channels and 16 channels is only 0.01. As shown in the last column of
Fig. 7, the visualization result using 3 channels closely resembles that obtained using all 16 channels. These results
demonstrate the efficacy of our channel selection method. Moreover, the time required to collect a sample using
16 channels is more than five times longer than that for a sample collected using 3 channels. This indicates that
the proposed channel selection method can significantly reduce data collection time and storage requirements.
We also compare the performance of TD-RTS with baseline models across different frequency channels. TD-RTS
outperforms the baseline models across all scenarios, demonstrating its robustness and generalizability under
channel-limited conditions.

Furthermore, we evaluate the biomass estimation performance using three channels selected by our fade-level-
based method. RSS data from 26 tubers are used, with 24 tubers for training and 2 tubers for testing. As shown in
Fig. 13, using 16 channels achieves the best performance across all evaluation metrics. However, the performance
of using 3 channels is comparable to that obtained with 16 channels. For example, the MAPE value obtained
using 3 channels differs from that using 16 channels by only 1.05%, demonstrating the efficacy of our channel
selection method for biomass estimation. Furthermore, compared with CNN-GRU [64] using RSS data from 16
channels, the proposed model using only three channels achieves superior performance across all evaluation
metrics, further demonstrating the efficacy of both the channel selection method and the model design.
In addition, we perform a series of observation experiments to analyze the stability of the selected channels.

First, we prepare different conditions of soils for experiments: relatively loose soil, more compacted soil, and
soil with altered mineral composition, as shown in Fig. 14. For each soil condition, we collect RSS data for
approximately one hour and define three sampling points for applying our channel selection method. Table 11
presents the channels selected by our method under three soil conditions. The selected results remain consistent
within each soil condition but differ across soil conditions. Furthermore, we perform two long-term experiments
to investigate how the selected channels vary with soil moisture. In the first experiment, we collect RSS data
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Table 11. Selected channels using our fade-level-basedmethod at three sampling points under three soil conditions. Frequency
channel indices range from 11 to 26, and the channels with the top three fade-level values are selected. In each column, the
channels are arranged from top to bottom in descending order of fade-level values.

Loose soil Compacted soil Fertilized soil
Sampling First Second Third First Second Third First Second Third

First Channel 24 24 24 23 23 23 25 25 25
Second Channel 26 26 26 24 11 11 24 24 24
Third Channel 25 25 25 11 24 24 23 23 23

Table 12. Selected channels using our fade-level-based method at different soil moisture levels. Frequency channel indices
range from 11 to 26, and the channels with the top three fade-level values are selected. In each column, the channels are
arranged from top to bottom in descending order of fade-level values.

Soil moisture decreasing Soil moisture increasing
Moisture 3.2% 1.5% 1.1% 0.5% 0.1% 6.7% 8.5% 11.9% 16.2% 17.5%

First Channel 14 14 14 20 20 24 14 25 23 23
Second Channel 16 16 21 14 14 23 24 24 24 22
Third Channel 15 19 20 21 21 25 23 14 22 24

for approximately 32 hours, during which the soil moisture gradually decreases. In the second experiment, we
perform irrigation and collect data for approximately 14 hours. Four irrigation events are performed, and channel
selection is performed after each event. Table 12 shows the channels selected under varying soil moisture levels,
which change as the soil moisture decreases or increases. These results demonstrate that the selected channels are
affected by soil properties and moisture levels, suggesting that the channel selection method should be reapplied
when soil conditions change. To address this challenge, we propose a scheme that periodically reselects channels.
In practice, channel reselection takes approximately 10 seconds, which is much shorter than the growth period of
underground root tubers (75-110 days) [48]. Furthermore, we measure the model training time on an RTX 4090
GPU using a dataset of 26 potato tubers at 32 positions, which requires approximately 1.5 hours and is also far
shorter than the growth period of underground tubers. These durations show the feasibility of periodic channel
reselection and model retraining.

5.8 Performance on Number of Sensor Nodes
In this section, we evaluate the performance of TD-RTS in a single-tuber scenario with varying numbers of
sensor nodes, and the results are presented in Fig. 15. As shown in Fig 15a, we compare the SSIM values obtained
from TD-RTS and CNN-UNet [27]. The SSIM values of CNN-UNet [27] increase with the number of sensor nodes.
However, TD-RTS consistently achieves higher SSIM values across all scenarios. As shown in Fig. 15b, TD-RTS
consistently achieves lower RPD values than CNN-UNet [27] across all scenarios with varying numbers of sensor
nodes. As shown in Fig. 15c, the IoU values of both TD-RTS and CNN-UNet [27] increase with the number of
sensor nodes. However, TD-RTS consistently outperforms CNN-UNet [27] in each scenario. These results suggest
that increasing the number of sensor nodes captures more semantic information about tubers, enhancing imaging
quality and detection accuracy. Note that we also compare TD-RTS to LSTM-UNet [46], but we observe that the
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(a) SSIM (b) RPD (c) IoU

Fig. 15. SSIM, RPD, and IoU performance of using different numbers of nodes.

(a) Outdoor environment and potato tubers.

Camera

Sensor

Ridge

Buried Tuber

(b) Testbed deployment.

Fig. 16. Outdoor environment, potato tubers, and testbed deployment for RTS. Two ridges are constructed to bury potato
tubers of different shapes and sizes, and the testbed is deployed and gradually moved to collect RSS data for each tuber.

performance of LSTM-UNet [46] significantly degrades as the number of sensor nodes decreases. For example,
when using six sensor nodes, the average IoU value obtained by LSTM-UNet [46] is only 0.07, while TD-RTS
achieves an average IoU value of 0.74 in the same case. These results demonstrate the robustness of TD-RTS for
image reconstruction under information-limited conditions.

5.9 Discussion and Future Work
Extend to 3D imaging and root tuber sensing of other crop types. In this paper, we focus on 2D cross-section imaging
of potato tubers to investigate the feasibility of networked sensing of underground root tubers. Our evaluation
shows that a low-power RF tomography network deployed above ground can capture the footprints of potato
root tubers below the soil surface. However, this is just the first step towards a general-purpose underground
root sensing system. To extend this work in the future, we can deploy a multi-layer RF tomography network
underground to reconstruct 3D images of root tubers by combining 2D images from each layer. In addition, we
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focus on sensing of potato root tubers in this work, since it is the first step towards root tuber sensing using RF
sensor networks. In the future, we plan to broaden our scope to a variety of root tubers and roots with more
diverse sizes and shapes.
Towards outdoor deployment. In this study, the proposed framework is suitable for deployment in indoor

environments and can be applied to sensing tasks such as greenhouse crop breeding. To further explore its
feasibility in outdoor environments, we construct an outdoor underground tuber planting scenario and perform
preliminary experiments, as shown in Fig. 16. Specifically, we build two ridges, and 18 potato tubers are evenly
buried in them. RSS data from 15 tubers are used to train the deep learning model and data from the remaining
3 tubers are used for evaluation. The evaluation results indicate that the sensing performance in the outdoor
environment is lower than that in the indoor environment. For example, the average RPD value in the outdoor
environment is 0.18, while it is 0.08 in the indoor environment. In practice, sensing performance is often degraded
by environmental noise [3], including other plants in the sensing area and weather conditions that can alter
soil properties, such as wind, rain, and sunlight. To further enhance outdoor sensing performance, we first
plan to replace the omni-directional antennas with directional ones for sensor nodes, thereby improving the
quality of radio link observations [68]. Second, we plan to collect RSS data from a larger number of underground
tubers for training, as increasing the diversity of training samples can further improve the generalizability of
data-driven models [78]. Third, we plan to explore transfer learning methods [50] to enable a model trained in
indoor environments to adapt to outdoor environments. Finally, we can increase the number of sensor nodes to
further improve the performance of RTS.

Investigation on WiFi CSI. In this work, we focus on root tuber sensing using RSS measurements from a network.
Since WiFi channel state information (CSI) data contain not only signal strength information but also phase
information on the wireless channel, WiFi CSI data can also be used to train our image reconstruction DNN
models. However, the phase measurements are more sensitive to motion in a dynamic environment, soil moisture
level, and other environmental factors than the RSS measurements. DNN models trained by insufficient CSI data
will suffer from the overfitting problem. Thus, we focus on the investigation of the sensing capability of RSS
measurements in this work. We leave the investigation of WiFi systems for underground RTS as future work.

6 Related Work
RF-based Sensing. Despite the absence of existing work using RF tomography for sensing underground biomass,
some previous RF-based works leveraging radio signals have been proposed for human sensing [39, 81], object
localizing [52, 60], fruit ripeness detecting [2], and underground root sensing [1, 42, 43]. For example, [43] and
[1] utilize the ground penetrating radar (GPR) to detect and reconstruct the underground plant roots. In [1], a
novel processing procedure is proposed, encompassing noise removal, soil dielectric constant calculation, and
wave migrations. Although these GPR-based methods demonstrate satisfactory performance in underground
root sensing, their broader applicability is hindered by cost constraints, high power requirements, and substantial
physical dimensions of the GPR.

Recent research endeavors aim to investigate the utilization of cost-effective RF-based devices for sensing [28, 31,
35, 38, 51, 65, 79]. For instance, a noteworthy contribution is presented by [4], where RF tomography is leveraged
to assess the moisture levels in stored rice. In this research, the authors introduce an innovative approach that
combines RF tomography with regression-based machine learning to offer a non-invasive, contactless method
for obtaining a 3D volumetric distribution of moisture content within stored rice grains. Another noteworthy
contribution is found in [65], which presents an RF-based solution for underground tuber sensing in a single-tuber
scenario, employing a ZigBee RF sensor network. In contrast to [65], we first extend the sensing scenarios to
include both single-tuber and double-tuber scenarios, while also enhancing the diversity of potato tubers. Then,
we consider the interference caused by environmental changes to wireless signals, a common issue in practical
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scenarios. Furthermore, we propose a novel sensing model that provides higher imaging quality and estimation
accuracy. Additionally, we consider the overhead of the RF sensor network and propose a novel channel selection
method to reduce the number of required channels, thereby decreasing network overhead while maintaining
accurate estimation.

Domain Adaptation Learning. Domain adaptation learning is a long-standing field aimed at bridging the gaps
between different domains. This method has been applied across various learning areas, including computer
vision [23], natural language processing [82], and signal processing [5, 40]. A common approach to domain
adaptation within deep neural networks is fine-tuning a model pre-trained on the source domain using data from
the target domain. For example, [40] designs an innovative domain adaptation approach to mitigate the challenges
faced by millimeter-wave radio-based gesture recognition in heterogeneous environments. This approach enables
practical gesture recognition by leveraging the pre-learned model with minimal target samples for fine-tuning.
Experimental results demonstrate that achieving comparable accuracy can be accomplished by retraining with
as few as eight samples per gesture. Meanwhile, [5] introduces a novel method for fine-tuning the pre-trained
model. This approach first adjusts the data distribution in the source domain to match that of the target domain,
and then uses a smaller set of target domain data to further fine-tune the model. In this paper, the novelty of our
proposed domain adaptation method lies in its ability to achieve robust imaging using RSS data from a single
tuber in dynamic environments.
Diffusion Model. Recent years have seen diffusion models achieve remarkable success in computer vision

tasks [9, 16, 57, 77]. For instance, [17] demonstrates the use of diffusion models for unconditional image synthesis,
achieving image sample quality that surpasses existing state-of-the-art generative methods. Additionally, [77]
enhances diffusion-based image synthesis by incorporating context prediction. Beyond image synthesis, diffusion
models have been successfully applied to other computer vision tasks. SR3 [61] leverages a diffusion model
for image super-resolution, outperforming GAN-based approaches. RePaint [45] introduces a diffusion model
for image inpainting, with an improved denoising strategy through resampling iterations within the model.
Traditional diffusion models operate directly on image pixels, requiring many iterations, substantial computational
resources, and large model parameters to achieve high-quality predictions. In contrast, we adopt a latent diffusion
model [57, 74] that uses an encoder-decoder network to compress the original image into a compact feature
representation, which is then fed into the diffusion process. This approach significantly reduces the model size
and the number of iterations needed to generate high-precision results.

7 Conclusion
This paper proposes a novel underground RTS framework, which leverages a low-cost RF sensor network and
deep neural network models to reconstruct cross-section images and estimate the biomass of underground
tubers. Furthermore, the adoption of a simple yet effective domain adaptation method significantly improves the
robustness performance of the framework in dynamic environments. In addition, we construct a comprehensive
dataset that is more realistic than the previous work and provides more accurate data annotations. The evaluation
results demonstrate the efficacy of the RTS framework across various sensing cases.
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