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Abstract—This paper proposes a data-driven root tuber sens-
ing (RTS) framework that uses the received signal strength (RSS)
data from a radio frequency (RF) sensor network to reconstruct
cross-section images of root tubers in soils. We perform extensive
experiments with our data acquisition system in various envi-
ronments to build a wireless potato sensing (WPS) dataset. We
propose to integrate multi-branch convolutional neural networks
with a diffusion neural network to enable fine-grained image
reconstruction of root tubers. To deal with the multi-path effects
on radio channels, we propose two domain adaptation methods:
one-shot fine-tuning to update the neural network model online,
and disentangled representation learning (DRL) to transfer a pre-
trained model to unseen environments. Experimental results from
over 1.7 million RF network measurements show the efficacy of
the proposed methods across different environments. Our data
and pre-trained models are publicly available on IEEE DataPort.

Index Terms—Underground sensing, Radio frequency sensor
network, Convolutional neural networks, Domain adaptation.

I. INTRODUCTION

As the development of remote sensing techniques, various
sensors and methods have been developed for monitoring
plant above-ground phenotypic traits, e.g., leaf area index [1],
in crop breeding [2], crop yield prediction [3] and other
smart agricultural applications [4]. While there is also a
pressing need to monitor underground phenotypic traits, such
as below-ground biomass, underground root sensing remains
an important research topic largely understudied, especially
for root vegetables and crops bearing starchy tuberous roots,
e.g., potato (Solanum tuberosum) [5].

For non-invasive RTS, computed tomography (CT) with
X-ray scanning has been used to obtain root tuber images
non-destructively in laboratory-scale environments [6]. How-
ever, CT machines have low mobility and are expensive for
widespread use in smart agricultural applications. Ground pen-
etrating radar (GPR) can also detect underground targets using
RF signals, and previous studies have used GPR together with
signal processing, machine learning and deep neural networks
techniques to reconstruct 2D and 3D images of underground
roots [7], [8], [9]. However, radar sensors experience distance
loss inversely proportional to the fourth power of the dis-
tance (1/D4), and higher frequency bands generally lead to
lower penetration capability. As wireless devices are becoming
ubiquitous nowadays, there is a research gap in investigating
RF networks in underground RTS, especially considering the
advantage of path loss in wireless communication devices over
radar devices.

(a) Imaging from a physical model. (b) Imaging from a DNN model.

Fig. 1: Imaging results for an underground tuber: (a) from
a physical RF tomography model [10], (b) from a DNN
model [11]. Red circles indicate the ground truth of the 2D
cross-section areas of the potato root tubers.

In fact, RF sensor networks have been widely used in var-
ious non-invasive sensing applications. For example, various
RF tomography methods have been proposed to detect, locate
people and even recognize their activities in a non-cooperative
way [12], [10], [13]. Recent studies have shown that deep
neural network (DNN) models achieve state-of-the-art (SOTA)
performance in these RF sensing applications. For example,
[11] uses a two-stage CNN model on the received signal
strength (RSS) data from an RF sensor network to achieve
radio tomographic imaging of objects in their simulation. [14]
applies a lightweight neural network to WiFi channel state
information (CSI) data for fruit ripeness sensing. However, we
find the following challenges, when applying existing methods
to networked RF sensing of underground root tubers.

First, previous physical model-based RF tomography meth-
ods focus on detection, localization and tracking of point tar-
gets, instead of area targets. To reconstruct images with higher
resolution, the RF tomography inverse problem becomes more
ill-posed. For example, when we apply the attenuation-based
RF tomography algorithm [12] to underground sensing of root
tubers, the reconstructed image shows high attenuation values
near the correct tuber location (an example shown in Fig. 1a),
but the structural similarity index (SSIM) with the 2D cross-
section ground-truth is only 0.52. As shown in Fig. 1b, the
state-of-the-art data-driven methods, e.g., CNN-based methods
outperform physical model-based methods. However, deep
neural networks (DNNs) require a large amount of training
data, and to the best of our knowledge, no dataset is publicly
available for networked RF sensing of underground root tu-
bers. Indeed, it is laborious and time-consuming to annotate

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3617880

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2

the ground truth of root tubers with various dimensions and
shapes. In this paper, we aim to fill in the gap by building an
RF network-based RTS dataset and designing a data-driven
RTS framework, as shown in Fig. 2.

Second, radio signals are sensitive to multi-path effects,
and even small environmental changes can cause significant
degradation of DNN models. As shown in Fig. 3b, a minor
environmental change, e.g., moving a chair, can cause a 4 dBm
variation in RSS data, which exceeds the 3 dBm difference
observed between scenarios with and without the root tuber.
In addition, a DNN model trained in an environment does not
generalize well to a new one due to different multi-path effects.
As shown in Fig. 3c, RSS values from the same RF link for
the same tuber in different environments exhibit significant
differences, degrading the performance of the DNN models.
Imaging samples are shown in Fig. 5c and Fig. 5e, with details
discussed in Section V-C2 and Section V-C3, respectively.

Finally, tuber dimensions, such as the cross-section area of
root tubers, are important phenotypic traits that require high
estimation accuracy. The estimated error of root tubers needs
to be sufficiently small to meet the requirements of tuber
genomics and phenomics research. However, even given a
large amount of training data, existing deep neural network
models, such as two-stage CNN models still fail to provide
fine-grained image results, as shown in Fig. 1b.

To tackle these challenges, we propose a novel RTS frame-
work with the following hardware and algorithm modules.
First, we choose potato tuber as the object of study and
design a data acquisition system called Spin, which includes
an RF sensor network, as well as a rotating platform that
enables data augmentation [15] for “through-soil sensing” in
the data collection stage. We perform extensive measurement
campaigns using the Spin testbed in various environments to
build a wireless potato root tuber sensing (WPS) dataset, which
contains over 30 hours of RSS measurements and over one
thousand ground truth annotations for 42 potato tubers with
different dimensions and shapes at different environments.

Second, to achieve fine-grained imaging from noisy RSS
data, we propose a novel DNN model, MC-Diffusion, which
is composed of multi-branch convolutional networks and a
latent diffusion network. Since the attention mechanism can
effectively extract useful information from noisy data [16],
MC-Diffusion integrates it into convolutional neural networks
to generate an initial image of the root tuber cross-section. Due
to the efficacy of diffusion networks in image denoising [17],
[18], we also design a novel latent diffusion network [19]
to generate the final fine-grained image by eliminating the
residual noise on the initial image, without adding many model
parameters and increasing too much training time as traditional
diffusion models.

Third, we propose two domain adaptation methods to ad-
dress the multi-path effects caused by environmental changes
and crossing environments, respectively. To robustly recon-
struct images under environmental changes, we combine the
MC-Diffusion model with a one-shot fine-tuning method [20],
which updates the model using the most recent RSS data
from a single tuber, enabling adaptation to a dynamic envi-
ronment. For cross-environment imaging, we propose a DRL

method [21] to extract environment-independent features for
root tuber imaging, enabling our data-driven model trained in
previous environments generalizable to unseen environments.

In summary, this paper makes the following contributions.
• We propose an RTS framework to reconstruct cross-

section images for underground root tubers using RSS
data from an RF sensor network. We build a wireless
potato sensing (WPS) dataset with over 1.7 million net-
work measurements collected in various environments.

• We propose a novel DNN-based model to achieve high-
quality imaging of underground tubers. An attention
mechanism, integrated into convolutional networks, adap-
tively adjusts the feature map, while a diffusion network
generates a high-quality image by removing noise.

• We propose two domain adaptation methods to address
the multi-path effects caused by environmental changes
and transitions between different environments, respec-
tively. A one-shot fine-tuning method is proposed to
update the neural network online, enabling adaptation to
environmental changes. A DRL method is proposed to
extract environment-independent features, facilitating the
transfer of our DNN model to unseen environments.

• We perform extensive real-world experiments, and ex-
perimental results from over 1.7 million RF network
measurements show that our RTS model outperforms
SOTA baselines in imaging quality and accuracy.

II. PROBLEM STATEMENT AND OVERVIEW

A. Problem Statement

Given an RF sensor network consisting of S sensor nodes,
there are M = S(S − 1) RF links, each operating on G
frequency channels. We use yg,l[n] to denote the RSS time
series from link l on channel g at time n, which can be
described as [22], [10]:

yg,l[n] = Ag − Lg,l −Hg,l[n] + Fg,l[n]− Vg,l[n], (1)

where Ag is the transmit power, Lg,l is the larger scale path
loss, Fg,l[n] is the fading gain, Vg,l[n] is the measurement
noise, and Hg,l[n] is the shadowing loss caused by objects
blocking the signal propagation path. Note that the transmit
power Ag is constant for all links operating on the same
frequency channel, and the larger scale path loss Lg,l remains
unchanged over time. Thus, we use a single subscript index for
Ag and two subscript indices for Lg,l, respectively. Including
all links and channels, we obtain the RSS data matrix Yr with
root tubers in soils, where each row corresponds to an RF link
and each column represents a frequency channel.

To mitigate interference from environmental factors and soil
conditions during underground tuber sensing, we collect RSS
calibration data Yc with no target, i.e., root tubers, present
in the sensing area. Then, we obtain the corrected RSS data
matrix Y for imaging underground tubers by subtracting Yc

from Yr:
Y = Yr −Yc. (2)

We let image vector r = [r0, · · · , rP−1]
T represent the 2D

cross-section image of the root tuber, where rp represents
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Fig. 2: Overview of the RTS framework. The RSS data from
an RF sensor network is fed into an MC-Diffusion neural
network, which is used to reconstruct tuber cross-section
images. “Conv” and “BN” denote the convolutional and batch
normalization layers, respectively. “Fixed Env” and “Cross
Env” denote the model components used to reconstruct root
tuber images in a particular environment and across different
environments, respectively. “Env-In Feature” and “Env-Re
Feature” respectively denote the environment-independent and
environment-related features used in DRL.

the presence of the root tuber at pixel p, and P denotes
the total pixel number. Based on RF tomographic imaging
formulations [12], [10], the relationship between the image
vector r and the corrected RSS data can be modeled as:

Y = H(r) + b, (3)

where H is an observation function, b represents model error
and measurement noise.

For root tuber imaging, we aim to find the inverse function
H−1 of H, which estimates the image vector r from RSS
data. Previous works in [12], [10], [22] model H as a linear
function and compute H−1 by solving an inverse problem of
H. As shown in Fig. 1a, the attenuation-based RF tomography
method [12] can provide a coarse location estimate for the
underground tuber but struggles in capturing fine-grained tuber
dimension and shape information. Thus, in this paper, we
take advantage of the SOTA DNN models to learn H−1, the
mapping between RSS data and tuber cross-section images.
That is, we aim to train the DNN model F : Y → r to
estimate the image vector r from the RSS data matrix Y:

r̂ = F(Y; Θ), (4)

where r̂ is the estimate of r and Θ is the set of neural network
parameters. During training, the neural network parameters
are iteratively optimized using different loss functions, as
discussed in Section III. During inference, the well-trained
network F serves as H−1 to generate cross-section images
from corrected RSS data.

B. Framework Overview

The overview of the RTS framework is shown in Fig. 2,
in which an RF sensor network-based testbed called Spin is
used for data acquisition, and a novel DNN model called

MC-Diffusion is used to reconstruct 2D cross-section images
from RSS data. The Spin testbed is described in Section IV-A,
and the MC-Diffusion model is described in Section III. We
describe the RTS scenarios that our framework covers next.

In this paper, we define the following three RTS use-case
scenarios: Case 1 - sensing in a static environment, Case 2 -
sensing in an environment with environmental changes, and
Case 3 - sensing across different environments. RSS time
series data from these different scenarios are shown in Fig. 3.
First, for RTS in a static environment (Case 1), the RSS time
series yg,l[n] from a particular link l on a particular channel
g can be very different for measurements Yr with root tubers
in soils and calibration measurements Yc without tubers in
soils. As shown in Fig. 3a, 3 dBm difference is observed due
to the attenuation effect of a root tuber. Although RSS data
from different links and channels have different variations due
to the presence of a root tuber, “fingerprints” of all RSS data
from an RF sensor network can be used to reconstruct root
tuber cross-section images.

Second, RSS data is not only sensitive to the presence of
root tubers, but also affected by the motion of other objects in
the environment [10]. As shown in Fig. 3b, human activities
occur at the beginning of phase 2, which causes short-term
variations in RSS data. In addition, after the RSS data reaches
a stable condition at the end of phase 2, a chair is moved at
the beginning of phase 3, which causes an additional 4 dBm
RSS variation. While the high variation RSS data caused by
human motion can be detected and corresponding periods can
be removed by using previous noise reduction methods [10],
the RSS changes caused by other environmental conditions
also need to be considered by the RTS framework. Thus,
Case 2 refers to RTS with short-term variations in a dynamic
environment, and a one-shot fine-tuning method is proposed to
update the neural network online, which is discussed in detail
in Section III-C.

Finally, we also aim to apply our DNN model trained by
data collected in one environment to different environments,
i.e., RTS across different environments (Case 3). From Fig. 3c,
we see that for the same root tuber, RSS data from the same
link on the same channel have significantly different values
for three different environments. In addition, different soil
moisture conditions can be seen as different environments, as
RSS data from the same link also have significantly different
values under different soil moisture conditions. As shown in
Fig. 3b, an irrigation event occurs at the beginning of Phase
1, which causes the RSS data to decrease from -65 dBm to
-73 dBm. While soil moisture and environmental changes can
be partially compensated by subtracting calibration data Yc

from Yr, and using the one-shot fine-tuning method, we find
that other domain adaptation methods are needed to deal with
the cross-environment issues. Thus, we have designed different
model components for fixed environment cases (Case 1 and
Case 2) and cross-environment case (Case 3), as shown in
Fig. 2. The DRL component designed for Case 3 will be
discussed in detail in Section III-D. Detailed flowcharts for
three use-case scenarios are provided in the supplementary
material.
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Fig. 3: RSS time series yg,l from a particular link l on a particular channel g in different sensing scenarios: (a) In a static
environment (Case 1), 3 dBm difference is observed with and without root tubers. (b) In a dynamic environment, RSS variations
of at least 4 dBm are observed with a person walking and moving a chair at the start of phase 3 (Case 2), and soil moisture
level is changed after an irrigation event at the beginning of phase 1 (Case 3). (c) In different static environments, RSS values
from the same RF link for the same tuber also show significant differences (Case 3).

III. MC-DIFFUSION MODEL

Our proposed MC-Diffusion model follows a two-stage
imaging framework [11], [23], [24]. In the first stage, a feature
extraction component is combined with a direct imaging com-
ponent for initial imaging in the fixed environment, and with
a DRL-based imaging component for initial imaging across
environments. In the second stage, an image optimization
component takes the initial reconstructions as input to further
enhance imaging quality. Additionally, we propose a one-shot
fine-tuning method to update the pre-trained model online,
enabling adaptation to a dynamically changing environment.
Details are provided below.

A. The Feature Extraction Component

In this study, we design a multi-branch convolutional neural
network to extract discriminative features from RSS data, with
each branch incorporating a pyramid structure. Since RF sig-
nals are collected from multiple links and frequency channels,
the branches are configured with varying convolutional kernel
sizes and depths to achieve significantly different receptive
fields. This design allows each branch to focus on a scale-
specific pattern in RF signals, enhancing the diversity of fea-
tures and contributing to more comprehensive representations
for imaging. As shown in Fig. 2, this network consists of
three branches, each of which consists of multiple sequential
convolutional blocks. Each block includes a convolutional
layer for feature extraction, a BatchNorm layer to handle
covariate shift and aid model convergence, and a ReLU
activation layer to introduce nonlinearity to the neurons. The
multi-branch CNN incrementally constructs representations
from low to high levels. Subsequently, we sum features from
the three convolutional branches and flatten the results to 1D
vectors. These vectors are then fed into different components
depending on different sensing scenarios, as discussed next.

B. The Direct Imaging Component
In a fixed environment, MC-Diffusion applies the direct

imaging component to reconstruct initial images using high-
dimensional features from the feature extraction component.
To this end, we propose a novel neural network incorporating
attention and convolution layers.

Specifically, the network first uses a linear layer to adjust the
dimension of a vector from the feature extraction component.
The output is reshaped into a two-dimensional feature map,
with the width and height being one-ninth of the target image’s
dimensions. Then, an attention layer, implemented with a
learnable weight matrix, is used to adaptively adjust the feature
map, emphasizing target-related features while attenuating
those unrelated to the target, i.e., root tuber. Subsequently, the
network interpolates the feature map to triple both its length
and width, and uses a 3 × 3 convolution layer to smooth the
result. Finally, the network interpolates the feature map to the
target size and refines the result using two 1× 1 convolution
layers. In this paper, bilinear interpolation is used for all
interpolation operations. To improve the imaging quality in a
fixed environment, this network is jointly optimized with the
multi-branch CNN using a mean squared error (MSE) loss
function, which is defined as [25]:

Lmse =
1

M

k=M∑
k=1

||rk −Fdir(Fcnn(Yk))||2, (5)

where Fdir denotes the network used in the direct imaging
component, Fcnn represents the multi-branch CNN, and M
denotes the number of training samples.

C. The One-shot Fine-tuning Component
In a dynamic environment, changes such as the relocation of

environmental objects cause variations in RSS data, degrading
the performance of the DNN model. To address this issue,
we take advantage of the fact that a root tuber grows much
slower than the human activity-induced or other environment-
induced dynamic changes, and propose to use the one-shot
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fine-tuning method to adjust the parameters of the pre-trained
model, improving its generalization ability. Specifically, we
first construct a well-trained MC-Diffusion model in a fixed
environment, which includes the feature extraction component,
the direct imaging component, and the image optimization
component (discussed in Section III-E). Upon detecting an
environmental change, the neural network parameters of the
feature extraction and direct imaging components are fine-
tuned using the most recent RSS data, while the parameters
of the other components remain fixed. The MSE loss function
is used to optimize neural networks during fine-tuning.

D. The DRL-based Imaging Component

Although corrected RSS data have been obtained for un-
derground tuber imaging, they remain insufficient for accurate
imaging across varying environments and soil conditions due
to environmental multipath interference and differing attenua-
tion caused by soil moisture variability [26]. In this study, we
design a novel neural network based on DRL to enable robust
imaging under varying multipath effects and signal attenuation
caused by soil moisture variability. This component takes
RF data collected under different environments as input and
explicitly separates environment-invariant features, facilitating
robust imaging across diverse environments. Additionally, by
treating each soil condition as a distinct environment, the
network can learn soil-independent features for imaging, en-
suring robust performance and demonstrating its generalization
ability across various sensing scenarios.

Specifically, a data pair (Yu,Yq) is selected with the same
ground truth, i.e., the same root tuber at the same location
in the RF sensing area, from two environments u, q. This
data pair is fed into the multi-branch CNN to generate the
individual feature vectors, Ou and Oq . Then, the DRL network
uses a feature separator to divide features Ou and Oq into
environment-related and environment-independent parts. The
separator employs an attention mechanism that adaptively
predicts the weight to split the original vector into two parts.
The separating process can be expressed as:

Oei
u = A(Ou)×Ou, Oer

u = (1−A(Ou))×Ou,

Oei
q = A(Oq)×Oq, Oer

q = (1−A(Oq))×Oq,
(6)

where Oei
u and Oei

q represent the environment-independent
feature vectors, while Oer

u and Oer
q represent the environment-

related feature vectors. The attention mechanism A is imple-
mented by linear layers, and the outputs Oei

u and Oei
q are

fed into additional linear layers to adjust their dimensions,
followed by interpolation and reshaping for tuber imaging.

To ensure feature disentanglement, the DRL network uses
a domain classifier that takes vectors generated by the fea-
ture separator as its inputs and aims to correctly distinguish
the environment-independent vectors (Oei

u and Oei
q ) from

the environment-related vectors (Oer
u and Oer

q ). The domain
classifier is implemented through linear layers, producing
a probability distribution corresponding to the environment-
independent and environment-related classes. Additionally,
since Oei

u and Oei
q correspond to the same tuber, the semantic

information encoded in Oei
u and Oei

q should exhibit consis-
tency or maximal similarity. Intuited by this, the DRL network
performs the similarity measurement between Oei

u and Oei
q ,

formulated as [25]:

Ldis = ||Oei
u −Oei

q ||, (7)

where ||·|| represents the mean absolute error (MAE) function.
The similarity measurement result is used as a loss to optimize
the neural network. In summary, three losses are produced
by this network: an MSE loss from imaging, a cross-entropy
loss from the domain classifier, and an MAE loss from the
similarity measurement. The total loss is formulated as:

Ldrl = Lmse + Ldis + Lcro, (8)

where Lcro denotes the cross-entropy loss from the domain
classifier. Finally, the DRL network is jointly optimized with
the multi-branch CNN using the total loss Ldrl.

During the inference phase, RSS data collected from a
new environment or a new soil condition undergo feature
extraction by the multi-branch CNN and feature separation
by the DRL separator, generating environment-independent
features for accurate cross-environment imaging.

E. The Image Optimization Component

Diffusion networks have demonstrated superior stability
and performance compared to generative adversarial network-
based (GAN-based) and autoencoder-based methods, as GANs
often suffer from unstable training [27], and autoencoders
may lose fine reconstruction details [28]. However, traditional
diffusion models rely on high-parameter denoising networks
and require numerous sampling steps to generate high-quality
images, resulting in substantial computational burden and long
inference time [29]. To address these challenges, we propose
a novel latent diffusion network that first encodes 2D images
into 1D vectors, and then performs the diffusion process on
these representations. In contrast to existing works [30], [23]
that perform diffusion directly in the image space, our network
operates in a low-dimensional latent space, enabling the use
of a lightweight denoising network and fewer sampling steps,
thereby enhancing both architectural efficiency and sampling
efficiency. After training the components for initial imaging,
the latent diffusion network is trained from scratch using the
initial reconstructions.

Specifically, the diffusion network first uses an encoder-
decoder module to encode a 2D image sample r̂ into a vector,
which is then decoded to produce a denoised result. The
encoder-decoder module is implemented by a UNet-shaped
transformer network (UTN ), comprising transformer blocks
with multi-head attention and gated feed-forward layers. To
ensure that UTN decodes a denoised result, the diffusion
network uses a prior representation learning module (PRM ),
which takes the concatenation of the image sample r̂ and
its corresponding ground truth r as input to generate a prior
representation z = PRM(r̂, r). The prior representation z is
fed into UTN along with the image sample r̂ as a dynamic
modulation parameter to denoise the feature map generated by
UTN , ensuring a high-quality decoding result. In this paper,
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PRM is implemented using a ViT network [31], and we first
perform joint optimization of PRM and UTN using MSE.

Subsequently, the network applies the diffusion process to
the prior representation, aiming to generate z without relying
on the ground truth r. During the training phase, the prior
representation z from PRM is corrupted by noise in the
forward diffusion process. In the backward diffusion process,
a denoising network ϵθ, composed of linear layers, estimates
the noise in zn, where zn is the noisy result at time step n. The
estimated noise is then used to obtain zn−1 to start the next
iteration. After N iterations, the estimated result ẑ is obtained,
which serves as a prior representation to be fed into UTN
along with the sample r̂ to reconstruct a denoised image. The
inputs of ϵθ are zn, n, and c, where c is a condition vector used
to control the backward diffusion process. To generate c, the
diffusion network uses a condition learning module (CLM )
implemented with a ViT network, which takes only the image
sample r̂ as input. Finally, CLM , ϵθ, and UTN are jointly
optimized using losses from both the diffusion and image
reconstruction processes, with MAE and MSE serving as their
respective loss functions.

During the inference phase, a conditional vector c is first
extracted from a test image sample using CLM . The denoising
network ϵθ then uses a randomly sampled Gaussian noise
zN and c to estimate ẑ after N iterations. Finally, ẑ is used
as the prior representation and input into UTN , along with
the test image sample, to generate a high-quality result.Note
that in this study, the denoising network consists of only 5
linear layers, significantly reducing the number of parameters
and inference time. The diffusion process requires only 10
iterations, further enhancing computational efficiency.

Since edges of underground tubers in reconstructed im-
ages are occasionally blurry, MC-Diffusion uses the Canny
algorithm [32] as a post-processing step to detect edges and
define cross-section areas of tubers, further optimizing the
reconstructed images. The region bounded by the detected
edge is defined as the cross-section area of a tuber, with
pixel values set to 1, while pixel values of other areas in
the reconstructed image are assigned a value of 0. This post-
processing step also facilitates the use of various evaluation
metrics, which are discussed in Section V-A1.

IV. EXPERIMENTS, DATASET AND PREPROCESSING

Using the Spin system, we conduct extensive measurement
campaigns and build a novel wireless potato sensing (WPS)
dataset for training and evaluation.

A. Data acquisition testbed

Our Spin testbed has the following hardware components.
1) RF sensor network with RSS measurements: The RF

sensor network used in our experiments consists of 16 TI
CC2531 (ZigBee) nodes deployed on a white rack, as shown
in Fig. 4a. Each sensor node is programmed with a time-
division multiple access (TDMA) communication protocol,
and operates on one of the 16 frequency channels of the 2.4
GHz ISM band at a particular time [22]. In our experimental
setup, a designated sink node receives all packets transmitted

① ②

③

④ ⑤ ⑥

(a) Spin testbed
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Fig. 4: The Spin data acquisition system: ① Small containers
with different potato tubers, ② TI CC2531 nodes, ③ RGB
camera, ④ Stick with colored marker, ⑤ Larger container, ⑥
Rotating platform.

by RF network nodes. The sink node is connected to a laptop,
on which the RSS measurements are stored and processed.
Note that the RF sensor nodes used in this study are low
cost, and our evaluations demonstrate that the cost increases
by only USD 80, while the performance improves by more
than 80%. Additional evaluation details are provided in the
supplementary material.

2) Through-soil RTS toolkit: Collecting large amounts of
RF sensing data is labor-intensive, especially for root tubers
buried in soil. We build upon the data acquisition system
developed in [33], which includes a rotating platform, and
“plug-and-play” containers to facilitate data collection. First,
we use two types of containers to avoid frequent soil digging
and tuber burying. As shown in Fig. 4a, the large container
contains soil with predefined locations to insert one or more
small containers. Potato tubers with different dimensions are
buried in different small containers with soil. Second, by
placing the “nesting containers” on a rotating platform and
rotating the platform with various predefined angles, root
tubers can be located at various positions and orientations
inside the sensing area. To automatically generate the ground
truth for potato tubers, we use a stick with a colored marker,
as shown in Fig. 4a, to indicate the position of the center of
mass of a tuber within the sensing area. We use a camera
and computer vision algorithms to capture the marker and
generate tuber ground truth, which is discussed in more detail
in Section IV-C1.

B. Experiments

Table I lists all experiments in the measurement cam-
paigns. In Exp.1, we perform experiments in a static environ-
ment (Case 1 as described in Section II-B). The RF nodes are
deployed on a rack of the size of 120 cm × 120 cm. We collect
RSS data from 10 potato tubers, which are buried in a small
container (container 1). The depth of potato tubers ranges from
11 cm to 13.5 cm. We randomly select 3 positions within a
larger container (container 2) measuring 86 cm in length, 63
cm in width, and 48 cm in height, to place container 1, which
are then rotated through 28 different angles on the rotating
platform. In total, we collected RSS data with 840 different
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TABLE I: Four sets of experiments in the WPS dataset.

Experiment Tuber Dimensions
(LxWxT) (cm)

RF sensor network
area (cm)

No. of
tubers

No. of
positions

No. of RSS
Measurements Description

Exp.1 L:7.0-10.0 W:4.5-8.0
T:3.5-6.0 120×120 10 84 1,189,360 RTS at a static environment (Case 1).

Exp.2-1 L:2.0-10.0 W:1.0-8.0
T:1.5-6.3 72×72 6 4 178,016 RTS at a dynamic environment (Case 2).Exp.2-2 26 1 69,312

Exp.3-1 L:7.5-10.5 W:5.4-7.0
T:4.5-6.3 72×72

10 4 56,160 RTS across a hallway, living room and meeting
room (Case 3).Exp.3-2 10 4 55,744

Exp.3-3 10 4 56,896

Exp.4-1 L:5.1-12.8 W:4.8-7.2
T:N/A 60×60

6 2 43,536 RTS across two soil moisture levels (7.1% and
11.2%) and a new environment (Case 3).Exp.4-2 6 2 43,856

Exp.4-3 6 2 23,696

tuber-position annotations, with each annotation matched to
one-minute RSS measurements.

In Exp.2, we perform experiments in a dynamic envi-
ronment with various environmental changes (Case 2). The
sensing area of the RF sensor network is set to 72 cm by
72 cm for imaging 26 potato tubers, as shown in Exp.2-2 of
Table I. Specifically, we perform two sets of experiments to
investigate the effects of 1) human activity and 2) relocation
of environmental objects. First, we collect RSS data from 6
tubers, each of which is placed in 4 different positions and
recorded for 4 minutes at each position. During data collection,
a person performs various activities within distances of 0.5
m to 2 m from the sensing area. Second, we collect RSS
data from 26 tubers placed at a predefined position within the
sensing area, while varying the environmental layout during
data collection. We define the environment before and after
altering the layout as E1 and E2, where E1 is the initial
environment and E2 represents the environment after moving
a chair and a paper box around the sensing area. Overall, we
collect two sets of data with 26 potato tubers placed at depths
ranging from 10.7 cm to 15.5 cm, with one-minute RSS data
recorded for each tuber.

In Exp.3 and Exp.4, we perform experiments across differ-
ent environments (Case 3). For Exp.3, we deploy our system
in three environments: an empty hallway, an office meeting
room, and a compact living room with furniture. For each
environment, we collect RSS data from the RF sensor network
for 10 potato tubers at 4 different locations, with one-minute
RSS data recorded for each tuber at each position. Although
we use the same RF sensor network with the same dimension
and configuration for these experiments, different multi-path
effects in these environments will cause domain shifts in
collected RSS data. Thus, as discussed in Section III-D, RSS
data from two environments are fed into the DRL network of
MC-Diffusion to train for learning environment-independent
features, while data from a third environment are used for
evaluation. For Exp.4, we perform experiments using soil
with different moisture levels. We use two types of soil
with moisture levels of 7.1% and 11.2%, and conduct data
collection in a hallway. As shown in Fig. 3b, RSS variations
due to irrigation are time-varying. To account for the impact
of different soil moisture conditions, we capture RSS data
once they have stabilized. Specifically, we collect RSS data

from six potato tubers at two positions using the RF sensor
network, with each tuber recording four minutes of data at
each position. To train and evaluate our DNN model, we also
collect RSS measurements in a meeting room using the same
tubers and soil with a moisture level of 7.1%, where we record
two minutes of data for each tuber at each position.

C. Dataset Description

Our WPS dataset includes over 1.7 million RF network
measurements and over one thousand ground truth annotations.

1) Ground Truth Annotation: We follow the procedures
below to annotate the ground truth of the potato tuber cross-
section image. First, the potato tuber is placed horizontally in
the smaller container, ensuring its maximum cross-section is
parallel to the ground. Then, one end of a stick is inserted
at the center of mass of the potato tuber, with the other end
marked with a colored marker and exposed above the soil
surface, as shown in Fig. 4a. When the potato tuber and
the container are rotated with the platform, a camera at a
fixed location captures RGB images, and an object detection
algorithm [34] is used to detect the position of the marker,
i.e., the center of mass of the potato tuber, in the RGB image.
Second, we construct a two-dimensional coordinate system for
the sensing area and convert the position of the marker in the
RGB image to the coordinate within the system, representing
the center of mass of the tuber in the sensing area. Third,
we use an elliptical function to approximately calculate the
coordinates occupied by the potato tuber within the coordinate
system. The calculation relies on the pre-measured dimension
of the tuber, the detected coordinate of the center of mass of
the tuber, and the recorded rotation angle. Fourth, we construct
a ground truth image with each pixel corresponding to an
individual region in the two-dimensional coordinate system.
The ground truth image has values of 1 at pixels corresponding
to the ellipse, and pixel values of 0 elsewhere. Note that,
to speed up the annotation of the ground truth, we use the
elliptical function to approximate the tuber cross-section area.
We can use more advanced image segmentation algorithms to
capture the ground truth of root tuber and we discuss it in
Section V-E.

2) RSS data: In Exp.1, we collect RSS data from 840
tuber-position pairs, generating 1,189,360 measurements with
different frequency channels. In Exp.2, the dataset can be
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TABLE II: Parameters used in the MC-Diffusion model.

Parameter description Default Value

Input dimension of the MC-Diffusion model. 16× 16× 15
Output dimension of the MC-Diffusion model. 360× 360

The number of layers of the UTN encoder. 4
The number of layers of the UTN decoder. 4
The number of transformer blocks in UTN. 16

The number of attention heads in UTN 32
The number of attention heads in ViT 8

The number of diffusion sampling steps 10
The number of layers in ViT 1

Patch size used in ViT 30× 30
Learning rate for initial imaging. 5e−4

Learning rate for the diffusion network. 1e−4

categorized into two subsets. The first subset is collected
during the introduction of human activity interference,
with a total of 178,016 network measurements recorded.
The second subset focuses on indoor deployment changes,
frequently occurring during long-term monitoring periods.
We gather RSS data from 26 fixed-position potato tubers,
yielding a total of 69,312 measurements in this subset. In
Exp.3, we collect 56,160, 55,744, and 56,896 measurements
from various environments for 10 potato tubers and 4
positions, respectively. In Exp.4, we collect 43,536 and
43,856 measurements from 6 tubers placed in soil with
moisture levels of 7.1% and 11.2%, respectively. To train
and evaluate the MC-Diffusion model, we also collect
23,696 measurements in a new environment with soil
moisture at 7.1%. In all experiments, we collect 1,716,576
network measurements from over 40 potato tubers with
various shapes and dimensions. We make our WPS dataset
publicly available at https://ieee-dataport.org/documents/
underground-root-tuber-sensing-wireless-networks.

Note that to train and evaluate our RTS models, the RSS
time series are preprocessed with data imputation and envi-
ronmental change detection modules. We follow the method
proposed in [33] to detect environmental changes. For data
imputation, we use the nearest packets for imputing the
missing data. To verify the efficacy of this imputation method,
we compare its imaging quality against other methods, such
as using a fixed value and the mean value. The results are
discussed in the supplementary material.

V. EVALUATION

We evaluate our framework through extensive experiments
and use various metrics to assess imaging quality and detection
accuracy for underground tubers.

A. Metrics and Model Parameters

1) Evaluation metrics: Numerous evaluation metrics have
been proposed to assess the quality of reconstructed im-
ages [39]. To comprehensively evaluate our framework, we
use the following four metrics to assess the imaging qual-
ity and accuracy of MC-Diffusion: structural similarity in-
dex (SSIM) [40], intersection over union (IoU) [41], equivalent

TABLE III: Performance of MC-Diffusion for Case 1. We
mark the best and second-best results using bold and under-
lined text, respectively.

Method
Evaluation Metrics

SSIM ↑ RPD ↓ IoU ↑ EDE(cm) ↓
CD-EIT [30] 0.99 0.09 0.81 2.70

Two-CNN [11] 0.88 0.55 0.28 6.70
CNN-LSTM [35] 0.82 0.22 0.57 4.04
Trans-CNN [36] 0.96 0.16 0.78 3.45
Swin-Trans [37] 0.86 0.20 0.80 3.92
Linear-CD [23] 0.97 0.20 0.80 3.88
MC-GAN [24] 0.95 0.46 0.36 6.01
MC-VAE [38] 0.98 0.20 0.58 3.99
MC-Diffusion 0.99 0.08 0.88 2.40

diameter error (EDE) [42] and relative pixel difference (RPD).
First, SSIM is a popular metric used to quantify the imaging
quality of an image reconstruction algorithm, ranging from
0 to 1, with higher values indicating better quality. Second,
IoU is a widely used metric to quantify the similarity between
the detection result and its ground truth, accounting for both
position and shape accuracy. It ranges from 0 to 1, with a
higher value indicating greater similarity. Third, we use two
additional metrics to quantify the accuracy of tuber cross-
section estimation. The EDE metric calculates the diameter of
a circle whose area is equal to the absolute area difference
between the estimated cross-section and the ground truth
cross-section. We define the RPD metric as the ratio of the
difference in pixel count between the estimated and ground
truth cross-sections to the total pixel count of the ground truth
cross-section. Smaller EDE and RPD values denote higher
estimation accuracy. Note that, through the post-processing
module described in Section III-E, the pixel counts for both
the estimated and ground truth cross-sections can be obtained
via simple summation. Furthermore, the cross-section area can
be calculated by multiplying the pixel count by the real-world
size represented by each pixel.

2) Model Parameters: In the multi-branch CNN, the first
branch employs convolution kernels of sizes 3 × 3, 5 × 5,
5 × 5, and 6 × 6, with corresponding output channels of
128, 256, 512 and 1024, respectively. The second branch uses
convolution kernels of sizes 9× 9, 7× 7, and 2× 2, achieving
256, 512, and 1024 output channels. The third branch features
convolution kernels of sizes 16×16 and 1×1, producing output
channels of 512 and 1024. In the DRL network, the feature
separator consists of two linear layers with output dimensions
of 512 and 1, employing softmax as the activation function.
The domain classifier comprises two linear layers with output
dimensions of 128 and 2, using LeakyRelu as the activation
function. Additionally, the DRL network includes two linear
layers for imaging with output dimensions of 6400 and 14400,
respectively, and uses LeakyRelu as the activation function.
Other parameters are listed in Table II.

B. Baselines

For comparison, we select six state-of-the-art data-driven
image reconstruction models as baselines, which can be
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(a) Case 1 w/o diffusion network (b) Case 1 with diffusion network

(c) Case 2 w/o domain adaptation (d) Case 2 with fine-tuning

(e) Case 3 w/o domain adaptation (f) Case 3 with disentanglement

Fig. 5: Potato tuber imaging results from our model (right) and
the Two-CNN model [11] (left) for three cases. The red circle
indicates the cross-section ground truth of a potato tuber.

categorized into two groups: end-to-end models [35], [36],
[37], [30] and two-stage models [11], [23]. First, for the
end-to-end models, the CNN-LSTM model [35] incorporates
convolutional networks into a long short-term memory model
to directly reconstruct images from RSS time-series data. The
Trans-CNN model [36] proposes an end-to-end model that
uses a transformer network to extract features from RSS data,
followed by convolutional networks for image reconstruction.
The Swin-Trans model [37] uses a novel transformer network
for feature extraction and image reconstruction. The CD-EIT
model [30] proposes a diffusion network that takes RSS data as
conditions to control the diffusion process in the image space,
and then reconstructs the target images. Second, for the two-
stage models, the Two-CNN model [11] develops a two-stage
convolutional neural network for image reconstruction from
RSS data. The first stage generates initial images directly from
RSS data, while the second stage is used to further enhance
image quality. The Linear-CD model [23] employs a two-
stage network, in which the first stage uses linear layers for
initial imaging, and the second stage applies a diffusion net-
work operating in the image space to enhance image quality.
Additionally, we employ RF-Diffusion [43], a generative AI

TABLE IV: Leave-k-out evaluation for Case 1. The variable
“k” represents the number of test tubers.

Method

k value k=1 k=2 k=3 k=4

RPD ↓ IoU ↑ RPD ↓ IoU ↑ RPD ↓ IoU ↑ RPD ↓ IoU ↑
CD-EIT [30] 0.16 0.86 0.14 0.85 0.17 0.83 0.14 0.85

Two-CNN [11] 0.07 0.93 0.22 0.80 0.18 0.80 0.24 0.76

Linear-CD [23] 0.11 0.88 0.29 0.77 0.27 0.80 0.24 0.81

Trans-CNN [36] 0.24 0.60 0.16 0.78 0.32 0.49 0.30 0.49

Swin-Trans [37] 0.22 0.69 0.27 0.69 0.30 0.69 0.27 0.69

CNN-LSTM [35] 0.13 0.53 0.30 0.64 0.22 0.63 0.21 0.58

MC-Diffusion 0.04 0.94 0.15 0.87 0.18 0.83 0.16 0.83

model that has demonstrated superior performance compared
to alternatives such as neural radiance fields [44], to synthesize
RF data to improve DNN training. RF-Diffusion is integrated
into both our model and the baselines for comparison, with
the results provided in the supplementary material.

C. Evaluation for Various Use-cases

1) Case 1 Evaluation: We first evaluate the performance
of MC-Diffusion in a static environment (Case 1), where RSS
data are collected at 840 positions for 10 root tubers. All
tuber-position pairs are split into a 9:1 ratio for training and
evaluation. As shown in the first row of Fig. 5, our method
exhibits higher imaging quality and estimation accuracy com-
pared to the baseline model [11]. Although both models
use convolutional neural networks for feature extraction and
initial imaging, the diffusion network of our model effectively
removes residual noise and generates more accurate results. As
reported in Table III, our model achieves SSIM and IoU values
of 0.99 and 0.88, respectively, outperforming all baseline
models. Additionally, it achieves RPD and EDE values of
0.08 and 2.40, respectively, which are also superior to those
of the baselines. These results demonstrate the efficacy of our
model design in achieving high-quality and accurate imaging,
compared to both two-stage and end-to-end models. Specifi-
cally, compared to end-to-end models [35], [36], [37], [30], our
model first uses convolutional networks for feature extraction,
which have shown superior performance over transformer-
based models on datasets of limited sizes [31]. In addition,
incorporating the diffusion network further reduces noise in the
reconstructions, enabling the model to generate high-quality
images. Compared to two-stage models [11], [23], our model
not only uses a diffusion network for image refinement but also
incorporates tailored components for initial imaging. These
designs enable our model to outperform the baseline models.

To demonstrate the efficacy of the latent diffusion net-
work in our model, we perform additional evaluations and
compare it with other image refinement models, including
GAN-based [24] and autoencoder-based [38] methods. We
use the same neural networks for initial imaging, followed by
different models for image refinement. To simplify notation,
we refer to the model using GAN for image refinement as
“MC-GAN” and the model using an autoencoder as “MC-
VAE”. Table III presents the evaluation results of various
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TABLE V: Performance of MC-Diffusion for Case 2 (dynamic
environments). E1 and E2 denote different conditions in
the same environment. The best and second-best results are
highlighted using bold and underlined text, respectively.

Method

Test E1 → E2 E2 → E1

Group 1 Group 2 Group 1 Group 2

RPD ↓ IoU ↑ RPD ↓ IoU ↑ RPD ↓ IoU ↑ RPD ↓ IoU ↑
CD-EIT [30] 0.13 0.82 0.16 0.80 0.26 0.69 0.21 0.74

Two-CNN [11] 0.21 0.81 0.79 0.58 0.17 0.86 0.48 0.70

Linear-CD [23] 0.30 0.68 0.85 0.52 0.13 0.81 0.61 0.62

Trans-CNN [36] 0.36 0.75 0.98 0.54 0.78 0.63 0.67 0.49

Swin-Trans [37] 0.92 0.57 0.90 0.54 0.91 0.51 0.87 0.39

CNN-LSTM [35] 0.49 0.75 0.71 0.60 0.12 0.87 0.38 0.75

MC-Diffusion 0.07 0.92 0.15 0.86 0.09 0.86 0.09 0.91

refinement methods in a static environment. First, the average
RPD and EDE values of our model are 0.08 and 2.40,
respectively, both lower than those of MC-GAN [24] and
MC-VAE [38]. Second, our model achieves an average IoU
value of 0.88, outperforming both MC-GAN [24] and MC-
VAE [38]. These results indicate that the stable and progressive
denoising process of the diffusion network enables it to capture
more details of the sizes and shapes of underground tubers,
thereby enhancing imaging quality and accuracy in the fixed-
environment case. To further assess the efficiency of our
diffusion network, we have performed comparisons with other
lightweight diffusion networks, and the results are provided in
the supplementary material. In addition, we have performed a
parameter sensitivity experiment on the number of diffusion
steps N , and the results demonstrate that increasing N beyond
10 yields diminishing returns in model accuracy. More details
are provided in the supplementary material.

Furthermore, we perform leave-k-out evaluation. We use
RSS data from 10 tubers, and the training-to-testing ratios for
tubers are configured as 9:1, 8:2, 7:3, and 6:4. According to
the results in Table IV, our model outperforms the baseline
models in terms of RPD and IoU, achieving average values
of 0.13 and 0.87, respectively, across different configurations.
These results not only demonstrate improvements over the
baseline models but also highlight the robustness of our model
for accurate imaging across different conditions.

2) Case 2 Evaluation: As described in the experimental
section, environmental changes can lead to noticeable varia-
tions in RSS measurements. To verify the robustness of our
MC-Diffusion model, we randomly modify the environmental
layout during data collection, thereby generating variations in
the RSS data and creating different environmental conditions
E1 and E2. We use data from one condition to build the pre-
trained model, which is then fine-tuned and evaluated in the
other condition. During testing, we select two groups: group
1 contains 5 tubers with an average size larger than that of
group 2, which also consists of 5 tubers. The second row of
Fig. 5 presents visualizations obtained using our method and
the baseline. Although both methods have similar imaging
quality, our method demonstrates higher estimated accuracy

TABLE VI: Performance of MC-Diffusion for Case 3 (cross
environments). Eh, Em, and El represent three different
environments: hallway, meeting room, and living room.

Method

Test Eh,m → El Eh,l → Em Em,l → Eh

RPD ↓ IoU ↑ RPD ↓ IoU ↑ RPD ↓ IoU ↑
CD-EIT [30] 0.20 0.70 0.24 0.78 0.23 0.79

Two-CNN [11] 0.25 0.56 0.27 0.22 0.19 0.63

Linear-CD [23] 0.26 0.71 0.33 0.70 0.31 0.59

Trans-CNN [36] 0.17 0.62 0.17 0.63 0.22 0.82
Swin-Trans [37] 0.35 0.44 0.29 0.38 0.28 0.63

CNN-LSTM [35] 0.33 0.23 0.30 0.13 0.27 0.34

MC-GAN [24] 0.13 0.83 0.20 0.80 0.19 0.76

MC-VAE [38] 0.17 0.73 0.19 0.68 0.30 0.77

MC-Diffusion 0.13 0.86 0.21 0.81 0.22 0.82

after fine-tuning. Table V compares the RPD and IoU values
of our model under dynamic changes (Case 2) with those of
the baseline models. Our model achieves average RPD values
of 0.08 and 0.12 for two groups of tubers under different
environmental conditions, which are lower than those reported
by the baseline models. Moreover, it achieves an average
IoU value of 0.89 for two groups, outperforming the baseline
models. On the one hand, the limited data prevent transformer-
based models [36], [37] from fully leveraging their strengths,
resulting in suboptimal performance. On the other hand, RSS
variations caused by dynamic changes lead to instability in
the diffusion model [30], which directly uses RSS data as
conditioning input. These variations in RSS data also affect the
first-stage modules of two-stage networks [11], [23], resulting
in performance degradation. In our model, we propose a one-
shot fine-tuning method to update model parameters online,
enabling automatic adaptation to new environmental condi-
tions and mitigating the impact of data variations.

3) Case 3 Evaluation: To verify the ability of the MC-
Diffusion model for cross-environment imaging, we collect
RSS data from three different environments: a hallway, a
meeting room, and a living room. We denote these envi-
ronments as Eh, Em, and El, respectively. As shown in
the third row of Fig. 5, our method presents more accurate
imaging compared to the baseline method, which exhibits a
false positive blob adjacent to the tuber ground truth. We
quantitatively evaluate our model using the RPD and IoU
metrics for cross-environment imaging. As shown in Table VI,
our model achieves average RPD and IoU values of 0.19
and 0.83, respectively, outperforming all baseline models. The
performance of baseline models degrades when applied to
new environments, as variations in multipath interference lead
to significant changes in RSS data. This not only reduces
imaging accuracy but also results in unstable performance. To
address this issue, our model incorporates a DRL component
that extracts environment-invariant features, so as to mitigate
overfitting to specific environments and enable more robust
and accurate imaging. We further compare different image
refinement methods for cross-environment imaging. As shown
in Table VII, our model achieves the best IoU performance,
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(a) RPD (b) IoU

Fig. 6: Results of an ablation study: RPD and IoU metrics for
the MC-Diffusion, Two-CNN, and Non-Optimization models.
El,Em and Eh denote the living room, the meeting room, and
the hallway environments, respectively.

(a) EDE of each test tuber used in
our experiment.

(b) EDE histogram for all test posi-
tions.

Fig. 7: EDE value for each test tuber and EDE histogram for
all test positions.

with values of 0.86, 0.81, and 0.82 in the three target envi-
ronments. All results outperform those of MC-GAN and MC-
VAE, demonstrating the efficacy of the diffusion network in
improving imaging quality and accuracy across environments.

Additionally, we perform an ablation study by removing
the image optimization component from the MC-Diffusion
model to evaluate cross-environment imaging. The remaining
model is referred to as “Non-Optimization”. Fig. 6 illustrates
the cross-environment performance of three models: MC-
Diffusion, Non-Optimization, and Two-CNN [11]. According
to Fig. 6a, MC-Diffusion achieves RPD values of 0.13 and
0.22 in two target environments: El and Eh, each of which
is lower than that of Non-Optimization (0.27 and 0.33).
From Fig. 6b, it can be observed that MC-Diffusion achieves
the highest IoU values in three environments. These results
demonstrate the effectiveness of the diffusion network in
enhancing the accuracy of estimating the shapes and sizes
of tubers. Moreover, Non-Optimization achieves IoU values
of 0.76, 0.78, and 0.64 in three environments, outperforming
Two-CNN in each scene. This demonstrates the effectiveness
of DRL in accurately estimating cross-sections and reducing
interference from diverse environments.

Furthermore, we evaluate MC-Diffusion using RSS data
collected under different soil conditions. As described in the
experiment section, we perform experiments in a hallway
under two soil moisture levels: 7.1% and 11.2%. Each soil
condition is treated as an environment. We also collect data
in a meeting room with soil at a moisture level of 7.1% to

TABLE VII: Performance of MC-Diffusion for Case 3. Eh1

and Eh2
represent two soil conditions with moisture levels of

7.1% and 11.2%, respectively, with data collected in a hallway.
Em represents a meeting room with the soil having a moisture
level of 7.1%.

Method

Test Eh1,m → Eh2
Eh1,h2

→ Em Eh2,m → Eh1

RPD ↓ IoU ↑ RPD ↓ IoU ↑ RPD ↓ IoU ↑
CD-EIT [30] 0.15 0.80 0.22 0.56 0.28 0.68

Two-CNN [11] 0.10 0.79 0.12 0.42 0.16 0.47

Linear-CD [23] 0.70 0.35 0.48 0.49 0.87 0.20

Trans-CNN [36] 0.28 0.41 0.17 0.69 0.28 0.39

Swin-Trans [37] 0.48 0.63 0.23 0.54 0.34 0.59

CNN-LSTM [35] 0.24 0.50 0.21 0.40 0.28 0.38

MC-GAN [24] 0.36 0.69 0.20 0.75 0.46 0.54

MC-VAE [38] 0.22 0.73 0.19 0.76 0.17 0.74

MC-Diffusion 0.15 0.82 0.18 0.80 0.18 0.75

train and evaluate MC-Diffusion. We denote Eh1 and Eh2 as
two soil conditions with moisture levels of 7.1% and 11.2%,
respectively, and Em represents the meeting room. Table VII
presents the RPD and IoU values of MC-Diffusion and base-
line models for imaging under different soil moisture levels.
MC-Diffusion achieves an average IoU value of 0.79 under
two soil moisture levels (Eh1 and Eh2 ), outperforming all
baseline models. The performance of baseline models degrades
under new soil conditions, as varying moisture levels lead to
different levels of RF signal attenuation, resulting in significant
changes in RSS data. To address this problem, MC-Diffusion
treats each soil condition as a distinct environment and uses the
DRL component to extract soil-independent features from RSS
data, enabling robust and accurate imaging across different
soil conditions. We further compare various image refinement
methods under different soil moisture levels. As shown in
Table VIII, MC-Diffusion achieves IoU values of 0.82 and
0.75 under two soil conditions, respectively, outperforming
MC-GAN [24] and MC-VAE [38]. In addition, the average
RPD value of MC-Diffusion across two soil conditions is
0.17, which is lower than the 0.41 and 0.20 reported by
MC-GAN and MC-VAE, respectively. These results not only
demonstrate the efficacy of the latent diffusion network in
enhancing imaging quality and accuracy across different soil
conditions, but also highlight its generalization ability across
diverse sensing scenarios.

D. Ablation Study

In this study, we propose a novel data-driven model com-
prising distinct components to reconstruct cross-section im-
ages of underground tubers, enabling robust imaging across
varying environments and soil conditions. To evaluate the
contribution of each component, we perform ablation studies
by individually removing the feature extraction, DRL-based
imaging, and image optimization components. The resulting
variants are referred to as “Non-Feature”, “Non-DRL”, and
“Non-Optimization”, respectively. We first evaluate the con-
tribution of each component in achieving cross-environment
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TABLE VIII: Performance of MC-Diffusion in the ablation
study. Eh, Em, and El represent three different environments:
hallway, meeting room, and living room.

Method

Test Eh,m → El Eh,l → Em Em,l → Eh

RPD ↓ IoU ↑ RPD ↓ IoU ↑ RPD ↓ IoU ↑
Non-Feature 0.27 0.58 0.23 0.76 0.29 0.54

Non-DRL 0.15 0.82 0.17 0.78 0.23 0.66

Non-Optimization 0.27 0.76 0.22 0.78 0.33 0.64

MC-Diffusion 0.13 0.86 0.21 0.81 0.22 0.82

TABLE IX: Performance of MC-Diffusion in the ablation
study. Eh1

and Eh2
represent two soil conditions with mois-

ture levels of 7.1% and 11.2%, respectively, with data collected
in a hallway. Em represents a meeting room with the soil
having a moisture level of 7.1%.

Method

Test Eh1,m → Eh2
Eh1,h2

→ Em Eh2,m → Eh1

RPD ↓ IoU ↑ RPD ↓ IoU ↑ RPD ↓ IoU ↑
Non-Feature 0.13 0.78 0.20 0.71 0.29 0.69

Non-DRL 0.16 0.80 0.34 0.64 0.21 0.50

Non-Optimization 0.13 0.82 0.20 0.72 0.25 0.72

MC-Diffusion 0.15 0.82 0.18 0.80 0.18 0.75

imaging. As shown in Table VIII, Non-DRL achieves an
average IoU value of 0.75 across all target environments,
which is lower than 0.83 achieved by the complete model.
This demonstrates the efficacy of the DRL-based component
in enabling high-quality imaging across environments. Mean-
while, the complete model achieves an average RPD value
of 0.18, outperforming 0.26 from Non-Feature and 0.27 from
Non-Optimization. These results verify the efficacy of both
the feature extraction and image optimization components
in enhancing imaging accuracy. Table IX further presents
the RPD and IoU values obtained from ablation studies in
imaging across different soil moisture levels. The complete
model achieves an average RPD value of 0.17 across all
target scenarios, which is lower than the values reported by
Non-Feature (0.21), Non-DRL (0.24), and Non-Optimization
(0.19). Moreover, the complete model achieves IoU values
of 0.82 and 0.75 for two soil moisture levels, respectively,
demonstrating consistent improvements over the Non-Feature
and Non-DRL models. These results further highlight the
efficacy of the components incorporated in our model.

E. Discussion and Future Work

To show the feasibility of a data-driven approach in wireless
RTS, we investigate the 2D cross-section image reconstruction
of a single potato tuber, which is placed underground at a
fixed depth with its maximum cross-section almost parallel to
the soil surface. We use an elliptical function to approximate
the truth shape of the root tuber to automate our cross-
section ground truth annotation. While this approximation can
introduce errors, we significantly speed up the building of a
large RF sensing dataset. We have performed an initial study
using a segmentation method to generate the ground truth,

and have provided the experimental details and evaluation
results in the supplementary material. Building upon our RTS
framework, more advanced image segmentation and other
algorithms can be used in future work to improve ground truth
annotation accuracy. In addition, we can use multiple layers
of networked nodes to perform 3D root tuber imaging, given
more data collected from various tuber orientations and depths
in the soil. We also leave it in future.

This paper focuses on 2D cross-section imaging of potato
tubers to investigate the feasibility of using an RF sensor
network for underground RTS. For cross-species RTS, we
have performed an initial transfer learning experiment by
training MC-Diffusion on potato root tuber data and testing
it on carrot taproot data, with evaluation results provided
in the supplementary material. The results demonstrate the
feasibility of our framework for cross-species sensing, but
more investigations are needed in future.

To achieve high-quality imaging, the MC-Diffusion model
uses a latent diffusion network for image optimization and
takes RSS data as input. In case 1, the average equivalent
diameter error (EDE) of our model improves by 40.59% com-
pared to the baseline method [35], but still achieves an EDE
value of 2.40 cm. To further analyze this error, we compute
the EDE value for each tuber and position, respectively. The
results are shown in Fig. 7. First, Fig. 7a illustrates the average
EDE for each potato tuber across all positions. We find that the
EDE values of most tubers are below the average of 2.40 cm,
whereas tuber 1 and tuber 10 exhibit noticeably higher values
of 2.64 cm and 2.80 cm, respectively. In our experiment, tuber
1 has the largest cross-section area (72 cm2), while tuber 10
has the smallest cross-section area (33.75 cm2). This indicates
that our model is effective for most tubers, but its performance
decreases for those with areas not fully represented in the
dataset. Second, we compute the average EDE of all tubers at
each test position and categorize these values into 16 bins. As
shown in Fig. 7b, the EDE values at most positions are below
the average value, confirming the effectiveness of our model in
these positions. However, there are still several positions where
the model’s error exceeds the average, indicating the potential
for improvement. In future work, the diversity of potato tubers
in the current WPS dataset can be further increased.

VI. RELATED WORK

RF sensing. Recently RF sensing techniques have been
proposed for various smart agriculture, food and forestry
applications. For example, WiFi CSI data and Sub-Terahertz
wireless signals are used for fruit ripeness sensing [14], [45].
RF tomographic imaging and machine learning algorithms
extract moisture content in rice from signal strength data from
a wireless network [46]. Ground penetrating radar (GPR) sen-
sors are used to detect and retrieve images of underground tree
roots [47], [48]. For underground tuber sensing, the study [49]
uses acoustic signals to monitor the growth condition of sweet
potatoes. While they show that sweet potatoes of different sizes
have different patterns on an acoustic spectrum from 3.2 KHz
to 20KHz, this research is in the preliminary stages.

Domain Adaptation. Domain adaptation learning is a long-
stand field that enables to reduction of the gaps across various
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domains. This ability has also been applied to many other
learning areas, such as computer vision [50], nature language
processing [51] and signal processing [52], [53]. The typical
way of conducting domain adaptation with deep neural net-
works is to fine-tune a model pre-trained on the source domain
using data from the target domain. For instance, To mitigate
the challenges faced by millimeter-wave radio-based gesture
recognition in heterogeneous environments, [53] designs an
innovative domain adaptation approach. This approach allows
for practical gesture recognition using pre-learned experiences
with minimal target samples for fine-tuning. Based on the
experimental findings, it has been demonstrated that achieving
the same level of accuracy only requires retraining with as
few as 8 samples per gesture. Meanwhile, [52] employs a
novel method to fine-tune the pre-trained model. This process
involves initially adjusting the data distribution in the source
domain to align it with that of the target domain, followed by
the utilization of a smaller amount of data from the target
domain to further fine-tune the pre-trained model. In this
paper, the novelty of our proposed domain adaptation learning
strategy lies in its ability to address challenges using only
one-shot samples in dynamic environments or without samples
collected from new environments.

Diffusion Model. In recent years, diffusion models have
demonstrated impressive performance in computer vision [54],
[27], [55], [56]. Diffusion models adopt a parameterized
Markov chain and generate a more accurate target distribution
than other generative models [19]. For example, [57] employs
the diffusion model for unconditional image synthesis, demon-
strating image sample quality that surpasses the current state-
of-the-art generative models. [56] further improves diffusion-
based image synthesis with context prediction. In addition to
image synthesis, diffusion models are widely used in other
computer vision tasks. For instance, SR3 [58] introduces a
diffusion model to image super-resolution, performing better
than SoTA GAN-based methods. RePaint [59] applies the
diffusion model to the image inpainting task, designing an
improved denoising strategy by resampling iterations within
the model. Traditional diffusion models operate directly on
image pixels, necessitating numerous iterations, computational
resources, and model parameters to achieve accurate predic-
tions. In this paper, we adopt a latent diffusion model [19], [54]
that initially trains an encoder-decoder network to compress
the original image into a compact feature, which is then fed
into the diffusion process. The reduced size of the feature map
decreases both the model size and the number of iterations
required for the diffusion network.

VII. CONCLUSION

This paper proposes a novel underground RTS framework
that leverages RSS data from an RF sensor network and
deep neural networks to reconstruct fine-grained cross-section
images of root tubers. To enable the data-driven RTS, we
first build a comprehensive dataset, and then combine the
MC-Diffusion model with the one-shot fine-tuning method to
make RTS robust in a dynamic environment. Furthermore, we
propose and implement a novel DRL network to enable trans-
ferring the image reconstruction model across environments.

Evaluation results show the efficacy of our RTS framework in
various conditions and environments.
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[23] A. Denker, Željko Kereta, I. Singh, T. Freudenberg, T. Kluth, P. Maass,
and S. Arridge, “Data-driven approaches for electrical impedance to-
mography image segmentation from partial boundary data,” Applied
Mathematics for Modern Challenges, vol. 2, no. 2, pp. 119–139, 2024.

[24] Z. Chen, C. Chen, C. Shao, C. Cai, X. Song, Y. Xiang, R. Liu, and
Q. Xuan, “Mitnet: Gan enhanced magnetic induction tomography based
on complex cnn,” IEEE Sensors Journal, 2024.

[25] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[26] M. C. Vuran and I. F. Akyildiz, “Channel model and analysis for wireless
underground sensor networks in soil medium,” Physical communication,
vol. 3, no. 4, pp. 245–254, 2010.

[27] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[28] K. Pandey, A. Mukherjee, P. Rai, and A. Kumar, “Vaes meet diffusion
models: Efficient and high-fidelity generation,” in NeurIPS 2021 Work-
shop on Deep Generative Models and Downstream Applications, 2021.

[29] Y. Zhao, Y. Xu, Z. Xiao, H. Jia, and T. Hou, “Mobilediffusion: Instant
text-to-image generation on mobile devices,” in European Conference
on Computer Vision. Springer, 2024, pp. 225–242.

[30] S. Shi, R. Kang, and P. Liatsis, “A conditional diffusion model for elec-
trical impedance tomography image reconstruction,” IEEE Transactions
on Instrumentation and Measurement, vol. 74, pp. 1–16, 2025.

[31] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[32] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
1986.

[33] Y. Zhao, T. Wang, and S. Elhadi, “Data-driven rf tomography via cross-
modal sensing and continual learning,” in 2025 14th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS).
IEEE, 2025, pp. 1–6.

[34] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[35] H. Wu, X. Ma, C. H. Yang, and S. Liu, “Attention based bidirectional
convolutional LSTM for high-resolution radio tomographic imaging,”
IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 4, pp. 1482–
1486, 2021.

[36] H. Wu, C. Cheng, T. Peng, H. Zhou, and T. Chen, “Combining
transformer with a latent variable model for radio tomography based
robust device-free localization,” Computer Communications, vol. 231,
p. 108022, 2025.

[37] N. Fan, Z. Tian, A. Dubey, S. Deshmukh, R. Murch, and Q. Chen,
“Multitarget device-free localization via cross-domain wi-fi rss training
data and attentional prior fusion,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 38, no. 1, 2024, pp. 91–99.

[38] H. Wang, L. Wang, Z. Wang, L. Ma, and Y. Luo, “Ssc-vae: Structured
sparse coding based variational autoencoder for detail preserved image
reconstruction,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 39, no. 7, 2025, pp. 7665–7673.

[39] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality assess-
ment: Unifying structure and texture similarity,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 5, pp. 2567–
2581, 2022.

[40] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[41] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, pp. 303–338, 2010.

[42] Z. Luo, H. Liu, D. Li, and K. Tian, “Analysis and compensation
of equivalent diameter error of articulated arm coordinate measuring
machine,” Measurement and Control, vol. 51, no. 1-2, pp. 16–26, 2018.

[43] G. Chi, Z. Yang, C. Wu, J. Xu, Y. Gao, Y. Liu, and T. X. Han,
“Rf-diffusion: Radio signal generation via time-frequency diffusion,” in
Proceedings of the 30th Annual International Conference on Mobile
Computing and Networking, 2024, pp. 77–92.

[44] X. Zhao, Z. An, Q. Pan, and L. Yang, “Nerf2: Neural radio-frequency
radiance fields,” in Proceedings of the 29th Annual International Con-
ference on Mobile Computing and Networking, 2023, pp. 1–15.

[45] S. S. Afzal, A. Kludze, S. Karmakar, R. Chandra, and Y. Ghasempour,
“Agritera: Accurate non-invasive fruit ripeness sensing via sub-terahertz
wireless signals,” in Proceedings of the 29th Annual International
Conference on Mobile Computing and Networking, 2023, pp. 1–15.

[46] A. A. Almaleeh, A. Zakaria, L. M. Kamarudin, M. H. F. Rahiman, D. L.
Ndzi, and I. Ismail, “Inline 3d volumetric measurement of moisture
content in rice using regression-based ml of rf tomographic imaging,”
Sensors, vol. 22, no. 1, p. 405, 2022.

[47] Y. Lu and G. Lu, “3d modeling beneath ground: Plant root detection
and reconstruction based on ground-penetrating radar,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2022, pp. 68–77.

[48] A. Aboudourib, M. Serhir, and D. Lesselier, “A processing framework
for tree-root reconstruction using ground-penetrating radar under hetero-
geneous soil conditions,” IEEE Trans. Geosci. Remote. Sens., vol. 59,
no. 1, pp. 208–219, 2021.

[49] J. Iwase, Y. Sato, D. Comparini, E. Masi, S. Mancuso, and T. Kawano,
“Non-invasive acoustic sensing of tuberous roots of sweet potato
(ipomoea batatas) growing belowground,” Advances in Horticultural
Science, vol. 29, no. 4, pp. 176–180, 2015.

[50] X. Gao, Y. He, S. Dong, J. Cheng, X. Wei, and Y. Gong, “DKT:
diverse knowledge transfer transformer for class incremental learning,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023. IEEE, 2023,
pp. 24 236–24 245.

[51] Z. Zhang, E. Strubell, and E. Hovy, “Transfer learning from semantic
role labeling to event argument extraction with template-based slot
querying,” in Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, 2022, pp. 2627–2647.

[52] M. Alvi, R. Cardell-Oliver, and T. French, “Utilizing autoencoders to
improve transfer learning when sensor data is sparse,” in Proceedings of
the 9th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, BuildSys 2022,. ACM, 2022, pp.
500–503.

[53] H. Liu, K. Cui, K. Hu, Y. Wang, A. Zhou, L. Liu, and H. Ma,
“Mtranssee: Enabling environment-independent mmwave sensing based
gesture recognition via transfer learning,” Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 1,
pp. 1–28, 2022.

[54] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 10 684–10 695.

[55] A. K. Bhunia, S. Khan, H. Cholakkal, R. M. Anwer, J. Laaksonen,
M. Shah, and F. S. Khan, “Person image synthesis via denoising
diffusion model,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 5968–5976.

[56] L. Yang, J. Liu, S. Hong, Z. Zhang, Z. Huang, Z. Cai, W. Zhang, and
B. Cui, “Improving diffusion-based image synthesis with context pre-
diction,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[57] P. Dhariwal and A. Q. Nichol, “Diffusion models beat gans on image
synthesis,” in Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, 2021, pp.
8780–8794.

[58] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi,
“Image super-resolution via iterative refinement,” IEEE transactions on
pattern analysis and machine intelligence, vol. 45, no. 4, pp. 4713–4726,
2022.

[59] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and
L. V. Gool, “Repaint: Inpainting using denoising diffusion probabilistic
models,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. IEEE, 2022, pp. 11 451–11 461.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3617880

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 15

Tao Wang (Student Member, IEEE) received the
B.S. degree (2019) in computer science and technol-
ogy from Jilin University and the MS degree (2021)
in computer science and technology from Harbin
Institute of Technology, respectively. He is currently
pursuing the PhD degree at International Research
Institute for Artificial Intelligence, Harbin Institute
of Technology, Shenzhen. His current research in-
terests include wireless sensing and artificial intelli-
gence. He is a student member of the IEEE.

Yang Zhao (Senior Member, IEEE) received the
B.S. degree (2003) in electrical engineering from
Shandong University, the MS degree (2006) in elec-
trical engineering from the Beijing University of
Aeronautics and Astronautics, and the PhD degree
(2012) in electrical and computer engineering from
the University of Utah. He was a lead research
engineer at GE Global Research between 2013 and
2021. He is currently a research professor at Harbin
Institute of Technology, Shenzhen. His research in-
terests include wireless sensing, edge computing,

and autonomous intelligent system. He is a senior member of the IEEE.

Jinghua Wang (Member, IEEE) received his B.S.
degree from Shandong University, MS degree from
Harbin Institute of Technology, and PhD degree
from The Hong Kong Polytechnic University. From
2014 to 2016, he was a research fellow with
Nanyang Technological University, Singapore. From
2017 to 2022, he was a Research Assistant Profes-
sor with Shenzhen University. He is currently an
Associate Professor with School of Computer Sci-
ence and Software Engineering, Harbin Institute of
Technology (Shenzhen), China. His current research

interests include computer vision, multimodal learning and machine learning.
He is a member of the IEEE.

Zhibin Huang (Student Member, IEEE) received
the B.S degree(2024) in computer science and tech-
nology from Harbin Institute of Technology, Shen-
zhen. He is currently pursuing the MS degree at
International Research Institute for Artificial Intel-
ligence, Harbin Institute of Technology, Shenzhen.
His current research interests include computer vi-
sion and artificial intelligence. He is a student mem-
ber of the IEEE.

Jie Liu (Fellow, IEEE) is a Chair Professor at Harbin
Institute of Technology Shenzhen (HIT Shenzhen),
China and the Dean of its AI Research Institute. Be-
fore joining HIT, he spent 18 years at Xerox PARC
and Microsoft. He was a Principal Research Man-
ager at Microsoft Research, Redmond and a partner
of the company. His research interests are Cyber-
Physical Systems, AI for IoT, and energy-efficient
computing. He received IEEE TCCPS Distinguished
Leadership Award and 6 Best Paper Awards from
top conferences. He is an IEEE Fellow and an ACM

Distinguished Scientist, and founding Chair of ACM SIGBED China.

Qiaorong Wei received the B.S. degree (2001)
in Agronomy from Northeast Agricultural Univer-
sity(NEAU), the M.S. degree(2005) in Crop Ge-
netics and Breeding from NEAU. She is currently
pursuing a PhD degree at NEAU. She has been
serving on the faculty of the College of Agronomy
at NEAU since 2006. She is Associate Director of
the Crop Modeling Research Center at the State Key
Laboratory of Smart Farm Technologies and Sys-
tems. Her research focuses on cultivation physiology
and smart production of potatoes.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3617880

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


