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Abstract—Tracking of people via active badges is important for location-aware computing and for security applications. However, the

human body has a major effect on the antenna gain pattern of the device that the person is wearing. In this paper, the gain pattern due

to the effect of the human body is experimentally measured and represented by a first-order directional gain pattern model. A method is

presented to estimate the model parameters from multiple received signal strength (RSS) measurements. An alternating gain and

position estimation (AGAPE) algorithm is proposed to jointly estimate the orientation and the position of the badge using RSS

measurements at known-position anchor nodes. Lower bounds on mean squared error (MSE) and experimental results are presented

that both show that the accuracy of position estimates can be greatly improved by including orientation estimates in the localization

system. Next, we propose a new tracking filter that accepts orientation estimates as input, which we call the orientation-enhanced

extended Kalman filter (OE-EKF), which improves tracking accuracy in active RFID tracking systems.

Index Terms—Wireless sensor networks, radio propagation, localization, tracking.
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1 INTRODUCTION

RECEIVED signal strength (RSS)-based radio localization
and tracking of people and assets has significant benefits

for logistics, security, and safety [1], [2]. Most RSS-based
methods make the assumption that transmitter badges
attached to objects or carried by people have isotropic gain
patterns. However, even when a transmitter badge has an
antenna that is considered isotropic, the person or object has
considerable effect on the badge’s radiation by: absorbing
power, altering the antenna impedance and thus its
radiation efficiency, and distorting the antenna gain pattern
[3], [4]. In this paper, we develop models and methods to
handle, and in fact benefit from, the removal of the
unrealistic isotropic gain pattern assumption.

Real-world directional gain patterns are problematic for
both fingerprint-based and model-based RSS localization
algorithms. In fingerprint-based localization, exhaustive
calibration measurements are performed in the environment
of interest, in which a person carries a transmitter to each
location, and perhaps each facing direction, while its RSS is
measured [1], [5]. The gain pattern that existed during the
calibration period is assumed to hold for all transmitter
badges, regardless of to what object or person they are
attached. In model-based algorithms, a model relating RSS
and path length is assumed [6] or estimated from training

measurements [7]. When the gain pattern is no longer
isotropic, in some directions, the RSS will increase, while in
some other directions, the RSS will decrease. Based on the
data, model-based algorithms will infer that the transmitter
is closer to receivers which measured larger RSS and will
thus produce estimates which are biased toward directions
of high gain in the gain pattern. In this paper, we focus on
improving the robustness of model-based algorithms to real-
world directional gain patterns.

In localization experiments, we find that position
estimates are often biased because of a nonisotropic gain
pattern. An example is shown in Fig. 1. In an experiment
described in Section 3.5.1, a person wears a transmitter
badge on his chest, and is located using the model-based
maximum likelihood estimation (MLE) algorithm that
assumes isotropic gain pattern [6], which we call the naive
MLE algorithm. When the person wearing the badge is
facing North, the badge position estimate is biased to the
North of its actual position; if the person is headed East, the
badge position estimate is biased to the East of its actual
position, etc. Essentially, the naive MLE estimates that the
badge is closer to receivers that measure more power, and
receivers in the direction the person is facing receive more
power than would be predicted by an isotropic model.

Previous studies have focused on characterizing the
effects of a human body’s location and orientation on RSS
measurements [1], [8], [9], [10], [11]. However, we are
unaware of research progress in the effort to include gain
pattern in model-based RSS localization algorithms. We
demonstrate progress in this direction.

To develop an improved model-based algorithm, we first
require a model for the directionality of a transmitter badge
when worn by a person or attached to an object. We focus
on the problem of a transmitter badge worn by a person.
However, we believe that tags attached to large objects will
generally experience nonisotropic gain patterns as well, so
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extensions to other types of tagged objects are feasible. We
perform experiments to measure the variation of RSS as a
function of the person’s orientation (i.e., facing direction).
Based on the results, we propose a first-order model to
capture most of the variation in the gain pattern as a
function of user orientation. We also present a method to
estimate user orientation and directionality from ordinary
RSS measurements collected by the network.

Next, we include the gain pattern model in the RSS-
distance model to jointly estimate the position and orienta-
tion of people in RF sensor networks. An alternating gain
and position estimation (AGAPE) algorithm is developed to
jointly estimate the position, orientation, and gain pattern of
the badge. Experimental results show that the root mean
squared error (RMSE) can be greatly reduced by including
the orientation estimate in the localization. For example, in
one experiment, the RMSE from the naive MLE algorithm is
2.65 meters, while the RMSE from the proposed algorithm is
0.87 meters, a 67 percent reduction.

It is not obvious that a nonisotropic gain pattern can
benefit coordinate localization, because of the required
additional “nuisance” parameters which must be esti-
mated. We provide theoretical results that show that
having a gain pattern is not an impediment for localization
algorithms—the existence of a directional gain pattern can
actually reduce position error. For this result, we derive the
Bayesian Cramér-Rao bound (Bayesian CRB) for joint
estimation of orientation and position. The Bayesian CRB
provides the lower bound on the mean squared error
(MSE) of any estimator [12]. Comparison between the
Bayesian CRB and CRB derived with an isotropic gain
pattern assumption [6] shows that joint estimation of
orientation and position may outperform (result in lower
MSE) estimation of position alone in the isotropic case.

We also present results that show that tracking is
improved by joint position and orientation estimation.
Regardless of whether one uses the gain pattern in a
localization algorithm or not, it is often important to track a
badge’s position over time to reduce uncertainty in an
object or person’s path. When a person wears a transmitter
badge in a consistent location on their body, we can infer
from their orientation which direction they will be moving,
since people tend to walk forward (much more than
backwards or sideways). We include this intuition to

develop a Kalman tracking method which uses orientation
estimates as input, which we call the orientation-enhanced
extended Kalman filter (OE-EKF). Traditional Kalman
filters and extended Kalman filters use only coordinate
estimates as input, even though they are used to estimate
velocity (and thus direction). Our OE-EKF is distinct
because it uses estimated orientation as an input, in addition
to providing estimated velocity. We find knowing orienta-
tion can also help improve the accuracy of tracking.

In summary, the contribution of this paper is to show that
real-world nonisotropic gain patterns of transmitter badges
are not a problem to be ignored, but a means to improved
localization and tracking performance. We propose a first-
order gain pattern model and validate it from a set of
measurements. We develop an algorithm to estimate gain
pattern from RSS measurements, and an alternating gain and
position estimation algorithm. The Bayesian CRB for the joint
estimation problem is derived and compared to that for
position estimation with isotropic gain patterns. Finally, an
orientation-enhanced extended Kalman filter is implemen-
ted to track mobile users in RF sensor networks.

The rest of this paper is organized as follows: Section 2
proposes a method to estimate the gain pattern of a
transmitter badge. Section 3 investigates joint position and
orientation estimation, including experimental and theore-
tical results. Section 4 investigates tracking, using standard
Kalman filters and a new OE-EKF method. Related work is
presented in Section 5, and finally we conclude in Section 6.

2 MODELS

Any improvement of model-based RSS localization algo-
rithms must begin with statistical models that are based on
real-world measurements. In this section, we present
measurement-based models for the gain pattern of a
transmitter badge worn by a person. A transmitter in close
proximity to a human body is strongly affected by that
proximity. Human tissue absorbs power sent in its direction
and distorts the gain pattern of the transmitter [3], [4].

A general model for the dBm power Pi received at
anchor node i from transmitter badge t, is the log-distance
model [13]. Including the transmitter gain pattern, the dBm
power Pi is modeled as

Pi ¼ P0 � 10np log10

di
d0

� �
þ gð�iÞ þ �; ð1Þ

where P0 is the received power in dBm at a reference
distance d0, np is the pathloss exponent, di ¼ kzi � ztk is the
distance between anchor node i at coordinate zi and
transmitter badge t at coordinate zt, �i is the angle between
anchor node i and the badge, gð�iÞ is the gain pattern in dB
of the transmitter badge at angle �i, and � is the model error
plus noise. In practice, we estimate np and P0 using the
received power measurements between pairs of anchor
nodes. Assuming known anchor node coordinates, we
estimate np and P0 via linear regression, as in [6].

Naive model-based localization algorithms use gð�iÞ ¼ 0
for all �i. We propose to include a nonzero gð�iÞ in (1). Note
that the function must be periodic since gð�iÞ ¼ gð�i þ 2�Þ
for any �i. Any real-world gain pattern will depend on the
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Fig. 1. Position estimate error due to nonisotropic gain pattern (anchor
node positions (�); actual badge positions ( ); MLE estimates (^);
walking directions ())).



person and the badge, and will look somewhat random;
however, we hope to capture the major features of gð�iÞ that
will be largely accurate for the average person.

Section 2.1 presents a measurement campaign to char-
acterize average behavior of gain patterns. Based on these
measurements, we formulate a model in Section 2.2 and
evaluate the model in Section 2.3.

2.1 Measurements

We perform several experiments to quantify the effect of the
orientation (facing direction) of a human body on the RSS
measured from the transmitter that the person is wearing.
We use two Crossbow TelosB nodes operating at 2.4 GHz.
One node (node 1) is placed on a stand, and the other one
(node 2) is worn by a person, hanging in the middle of his
chest. While keeping the distance between these two nodes
the same, the person wearing node 2 turns 45 degrees every
20 seconds. Node 2 transmits about 20 times per second, and
the RSS at node 1 is recorded on a laptop. Thus, about 400 RSS
measurements are recorded for each of the eight different
orientations. The above experiment is repeated eight times
by five different people wearing the badge in the student
recreation building and an empty parking lot at the
University of Utah. The distances between the two nodes

are varied from 1.5 to 5.0 meters in these eight different
experiments. A total of 25,600 measurements are recorded.

As expected, individual measured gain patterns are
unique. Fig. 2a shows the measurements from two different
experiments. In both experiments, the minimum RSS are at
either 180 or 145 degrees, and the maximum RSS are at 0 or
315 degrees. The mean gain pattern, averaged across all
experiments, is shown in Fig. 2b. We see that if the person’s
orientation is 180 degrees, i.e., the human body blocks the
line-of-sight (LOS) path between node 1 and node 2, the
gain pattern is close to the minimum. If the person is facing
node 1, i.e., an orientation of 0 degrees, then the gain pattern
is about 20 dB higher than at its lowest point. The average
gain pattern closely resembles a cosine function with period
360 degrees and an amplitude 10 dB.

We note that the variation we see in received power as a
function of angle due to the presence of the human is
similar to results from other measurement studies [5], [10].

2.2 Gain Pattern Model

Based on the results of the measurements, we propose a
model for the gain pattern ĝð�Þ, as a cosine function with
period 360 degrees

ĝð�Þ ¼ G1 cosð�� �Þ; ð2Þ

where � is the orientation (direction of maximum gain) of the
badge (see Fig. 3), and G1 � 0 is the magnitude of the cosine
function in dB. We also refer to G1 as the directionality,
because high G1 indicates that badge’s pattern is highly
directive in one direction, while G1 ¼ 0 indicates no
directionality, i.e., the badge is an isotropic radiator.1

There are two main reasons to use the model of (2). First,
the model represents the two most important characteristics
observed in the measurements, regardless of path length or
person wearing the badge: that the gain is higher in the
direction the person is facing, and lower in the direction
opposite. In an RF sensor network with several anchor nodes,
suppose a user wearing a badge stands halfway between
node j and node k facing node k, as shown in Fig. 3. Then,
based on our measurements, the mean RSS value of node k
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Fig. 2. Human body effect on gain pattern (RSS from mean).
(a) Measured gain patterns and 1� � error bars in two different
experiments (Gain pattern at each orientation is averaged over about
400 measurements during a period of 20 seconds); (b) Average over all
measured data (Gain pattern is maximum when person is facing
0 degrees to the other sensor).

Fig. 3. Gain pattern of a badge in a network.

1. The standard definition of directivity is related to the maximum gain
across both elevation and azimuth angles; here we consider only azimuth
angles, effectively assuming the maximum directive gain is along the
azimuth [14].



would be greater than that of node j, although the distances
between the badge and these two nodes are the same.

The second reason to use (2) is that it is a first-order model
for any periodic function, and for this data in particular, the
measurements show a single order captures the vast
majority of the angular variation. Any function with period
2� has a Fourier series representation as a sum of sines and
cosines at frequencies that are integer multiples of 1

2� :

gð�Þ ¼ 1

2�

X1
k¼�1

GðkÞej2�k�;

where GðkÞ are the complex-valued Fourier series compo-
nents [15]. When gð�Þ is purely real, thenGð�1Þ andGð1Þ are
complex conjugates, and thus Gð�1Þ þGð1Þ ¼ 2IRfGð1Þg,
where IR is the real operator. As a result

gð�Þ ¼ 1

2�
Gð0Þ þ 1

�
IR

X1
k¼1

GðkÞej2�k�
( )

: ð3Þ

The model of (2) is simply the first harmonic of an arbitrary
gain pattern measurement. That is, we include only the k ¼
1 term in (3).

2.3 Gain Pattern Model Evaluation

When measuring the gain pattern at discrete values of
�i; i ¼ 0; 1; . . .N � 1, we require the discrete Fourier trans-
form (DFT) instead of the Fourier series. However, the same
principle applies—the cosine with period 2� is the first-
order approximation of the gain function. Specifically, for
the gain pattern at angle �i, the discrete-time exponential
representation is given by

gð�iÞ ¼
1

N

XN�1

k¼0

GðkÞej�ik

¼ 1

N
Gð0Þ þ 2

N
IR

XM
k¼1

GðkÞej�ik
( )

¼ 1

N
Gð0Þ þ 2

N

XM
k¼1

jGðkÞj cos ffGðkÞ þ �ikð Þ;

ð4Þ

where M ¼ N
2 , and �i ¼ 2�i

N , for N equally spaced measure-
ments. In the measurement experiments, we had N ¼ 8.

The mean gain Gð0Þ is simply the average of all of the
differences (which we call the model error) between Pi
and the log-distance path loss model, that is, P0 �
10np log10ðdi=d0Þ. Because np and P0 are determined by
linear regression, they tend to make the model error zero
mean. Thus, we assume that Gð0Þ ¼ 0 dB because any
mean model error would have been removed by the
linear regression. Then, the gain pattern from an M order
model can be estimated as

ĝMð�iÞ ¼
2

N

XM
k¼1

jGðkÞj cos ffGðkÞ þ �ikð Þ: ð5Þ

The first-order model including only the k ¼ 1 term in (5), is

ĝð�iÞ ¼
2

N
jGð1Þj cosðffGð1Þ þ �iÞ: ð6Þ

To evaluate the first-order model for the gain pattern at
discrete values, we use it to recover the mean gain pattern

(shown in Fig. 2b) obtained from eight experiments of the
measurement campaign. We also use the zero-order model,
i.e., with only DC component Gð0Þ in (4), and the second,
third, fourth order models to recover the actual gain
pattern. The relative approximation errors are shown in
Fig. 4. We see that if we only use the DC component Gð0Þ,
the relative approximation error is 100 percent. If we use the
first-order model, the relative error decreases dramatically
to less than 30 percent. If we use higher order models, the
relative error continues to decrease, but only decreases
slightly as more DFT terms GðkÞ are added. We note that,
using a zero-order model with Gð0Þ ¼ 0 is equivalent to
using an isotropic gain pattern assumption. Fig. 4 shows
that the approximation error from the first-order model is
about 70 percent less than that from the zero-order model.
So the first-order model is much more accurate than the
zero-order model with isotropic gain pattern assumption.
Although using higher order models can further reduce the
approximation error, the reduction of error is not so
significant compared to the reduction from the zero-order
model to the first-order model. Using higher order models
also requires more parameters, which increases the problem
of overfitting. Thus, we propose to use the first-order
sinusoidal model to quantify the effect of the human body
orientation on RSS measurements.

3 LOCALIZATION USING ORIENTATION

3.1 Problem Statement

In this section, we focus on 2D position estimation using
RSS measurements. For a network with N anchor nodes and
one badge (we use one badge to simplify notation, but
extension to multiple badges is possible), the position
estimation problem corresponds to the estimation of the
coordinates of the badge zt ¼ ½xt; yt�T . However, from (2),
two parameters in the gain pattern model must be
estimated. So we include these two parameters as nuisance
parameters, and the unknown parameter vector �� becomes

�� ¼
�
zTt ; �;G1

�T
; ð7Þ
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Fig. 4. Relative approximation error versus model order (number 0
corresponds to the isotropic gain model, number 1 corresponds to the
first-order model; the approximation error is relative to the error of the
isotropic gain model).



where � is the orientation of the badge, and G1 is the
directionality of the gain pattern.

3.2 Baseline Algorithm

To estimate both the badge position and the gain pattern, a
baseline algorithm—4D maximum likelihood estimation
algorithm is introduced here for algorithm comparison and
analysis.

As discussed in Section 2, the received dBm power Pi is
modeled as (1). Assuming the RSS values Pi are indepen-
dent Gaussian with variance �2, and mean �ð��Þ ¼ P0 �
10np log10ðdi=d0Þ þ gð�iÞ, one can show that the MLE of the
badge position is

�̂�MLE ¼ arg max
�

XN�1

i¼0

ðPi � �ð��ÞÞ2: ð8Þ

One way to find the MLE solution is to use the grid
search method. For example, the TI CC2431 uses a 2D grid
search method to find the MLE coordinate estimate for the
isotropic gain pattern case [16]. However, as the dimension
of the estimation parameter vector �� increases, the
computation time of grid search increases exponentially.
Since we have four parameters in ��, a 4D grid search
method can be used to obtain the MLE solution for analysis,
but the high computation cost prohibits it from real-time
applications. To jointly estimate the position and the gain
pattern, a different algorithm must be used.

3.3 Gain Pattern Estimator

Before we propose the algorithm to jointly estimate the
position and the gain pattern, we first introduce a gain
pattern estimator, assuming we know the badge position zt.

By comparing (6) and (2) in Section 2, we find the two
model parameters � and G1 of the gain pattern can be
calculated as

� ¼ �ffGð1Þ;

G1 ¼
2

N
jGð1Þj:

ð9Þ

Thus, to estimate the gain pattern, the DFT term Gð1Þ needs
to be calculated first.

In the measurement experiments discussed in Section 2.1,
it was possible to measure the gain at equally spaced
angles. In real deployments, anchor nodes will make
measurements at a variety of nonequally spaced angles �i,
depending on badge and anchor node positions. The most
common way to estimate the spectral content in a signal
using nonequally spaced samples is simply to apply the
DFT to the available samples [17]. Thus, we estimate GðkÞ as

GðkÞ ¼
XN�1

i¼0

gð�iÞe�j�ik: ð10Þ

To calculate gð�iÞ in (10), rewriting (1), we have

gð�iÞ ¼ Pi � P0 þ 10np log10

di
d0
; ð11Þ

where �i is the angle between anchor node i and badge

�i ¼ atan
yi � yt
xi � xt

� �
:

Note we need only Gð1Þ for the first-order model of (2).
This calculation of Gð1Þ requires only N complex multi-
plies and adds, where N is the number of RSS measure-
ments received for a badge. This low complexity is
important to minimize the computational complexity of
the localization algorithm.

3.4 Alternating Gain and Position Estimator

In the gain pattern estimator, we assumed known badge
position, which in general, is unknown. For joint position
and gain pattern estimation, in this section, we propose an
alternating gain and position estimation algorithm to
efficiently estimate both the position and orientation of
the user wearing a badge in an RF sensor network.

The basic idea of this algorithm is to first estimate the
position of the badge, and take advantage of the first-order
sinusoidal model to calculate the gain pattern parameters.
Given the gain pattern, we use the RSS-distance model (1)
to reestimate the position of the badge. The algorithm
iterates until a misfit function is minimized. We note that
the proposed AGAPE algorithm is a form of alternating
minimization method [18].

The flowchart of the AGAPE algorithm is shown in
Fig. 5, and the detailed procedure is discussed here. For the
first step, assuming the gain pattern is isotropic, we use the
naive MLE method to estimate the badge position based on
the RSS-distance model in [6]. The MLE solution can be
found via a conjugate gradient algorithm [6], here, we use a
2D grid search method in the position estimation step to
avoid the local minima problem from a numerical method.
Again, we note that 2D MLE grid search can be accom-
plished quickly in hardware [16]. The output of the position
estimation step, we refer to as ẑt.

The next step is the orientation estimation step. Given an
estimated position, we calculate the gain pattern gð�iÞ from
the RSS-distance model (1)

gð�iÞ ¼ Pi � P0 þ 10np log10

kẑt � zik
d0

: ð12Þ

And then, Gð1Þ is calculated from (10). After that, the
orientation � is estimated from the phase angle of Gð1Þ, and
the directionality G1 is estimated from the magnitude of
Gð1Þ, as given in (9). Finally, we use the estimated �̂ and Ĝ1

in the RSS-distance model to estimate the position of the
badge ẑt again.

The steps of position estimation and orientation estima-
tion repeat until the following misfit function is minimized

� ¼
XN
i¼1

Pi � P̂i
� �2

; ð13Þ
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Fig. 5. Flowchart of the AGAPE algorithm.



where P̂i is the RSS estimate at anchor node i, which is
calculated from the RSS-distance model (1) using estimated
badge position ẑt, and estimated gain parameters �̂ and Ĝ1.
We do not study convergence results for the AGAPE
algorithm. Since minimizing (13) corresponds to a nonlinear
least squares problem, we expect that AGAPE will be
trapped in local minima. To avoid reporting local minima,
we rerun the algorithm from different initial conditions. We
fix the initial values of G1 to a nonzero value, set the initial
values of � to a combination of four different orientations,
i.e., 0, 90, 180, and 270 degrees, perform AGAPE for each
initial condition and choose the result with the minimum
misfit function as the final result.

3.5 Experiment and Results

3.5.1 Experiment Description

Three localization experiments are performed in a 6.4 m
by 6.4 m area outside the Merrill Engineering Building of
the University of Utah. This grassy area is near trees and
3 m away from the building wall. The area is surrounded
by 28 TelosB anchor nodes deployed at known locations
on stands at 1 m height. The nodes are programmed with
TinyOS program Spin [19] to allow collection and
recording of pairwise RSS measurements.

First, we measure pairwise RSS measurements between
anchor nodes. Since the locations of the anchor nodes are
known, we use the measured RSS and the link length to
estimate the np and P0 parameters of the log-distance model
of (1). Then, a person wears a TelosB node in the middle of his
chest, and walks on a marked path at a constant speed of
about 0.5 m/s. We ensure a constant speed using a metered
path and a metronome. For example, in one experiment
(Experiment 1), a person walks twice around a marked square
path. Since the square path is marked and the person walks at
a constant speed, the actual positions of the person are known
at all times. Also, the person always walks forward in a
straight line along each side of the square path, so the
orientation of the badge is always identical to his walking
direction. In the other two experiments (Experiments 2 and 3),
another TelosB node is worn by another person. He walks on
a marked rectangular path and a marked square path,

respectively, in Experiments 2 and 3. The actual positions
and orientations of the badge during these experiments are
both known, so we can compare them with the position and
orientation estimates from the AGAPE algorithm.

3.5.2 Experimental Results

For Experiment 1, the estimated orientations are shown in
Fig. 6, together with the actual walking directions (badge
orientations). The orientation estimates generally agree well
with the actual orientations. The deviations from the actual
orientations are generally less than 30 degrees. However,
sometimes when the person is turning, the bias is larger
than 30 degrees. This may be due to the fact that the
algorithm uses RSS measurements from 28 anchor nodes to
estimate the person’s orientations, and at the turning points,
RSS measurements may be a mix of those recorded before,
after, and during turning.

The cumulative distribution function (CDF) of the
orientation estimation error is shown in Fig. 7. The median
error from the AGAPE algorithm is about 10 degrees, and
more than 90 percent errors are below 30 degrees. Also
shown in Fig. 7 is the CDF of orientation error from the
MLE 4D grid search method. The MLE 4D grid search
method searches every 10 degrees for the MLE solution of
the orientation. While the grid search method takes much
more time (on the order of 10 times more than the AGAPE
algorithm in our Python implementation), the estimates are
not more accurate than those from AGAPE. The median
error from the grid search method is also 10 degrees.

Besides the orientation of the badge, another nuisance
parameter G1 is also estimated. The average value of the
estimated G1 is 12, which suggests that the directionality of
the gain of the transmitter badge worn by this particular
person in this particular environment is about 12 dB. This
value is consistent with the results from our measurement
campaign discussed in Section 2.1.

The most important result that we are interested in is the
performance of position estimation. The CDF of the position
estimation error is shown in Fig. 8. The median error of the
position estimates is about 0.61 m, and about 90 percent of
the estimation error is below 1.22 m. However, for the naive
MLE method, the median error is 2.60 m, which is about 4.3
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Fig. 6. Mobile’s actual orientations ( ) and orientation estimates (�)
(time for each sample is about 0.4 seconds).

Fig. 7. CDF of orientation estimation error.



times larger than that from AGAPE. From the comparison
of the CDFs, we see that significant improvement is made if
we include the orientation estimate in the localization.

We also compare the root mean squared error of the
position estimates, which is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK�1

k¼0

�
x̂tðkÞ � x0

�2 þ
�
ŷtðkÞ � y0

�2

vuut ; ð14Þ

where x̂t
ðkÞ, ŷt

ðkÞ are estimated coordinates at time k, and x0,
y0 are actual coordinates.

The RMSEs from the AGAPE algorithm of all three
experiments are listed in Table 1. Also listed are the RMSEs
from the naive MLE 2D method, and the RMSEs from the
MLE 4D grid search method. We see that for Experiment 1,
the RMSE from AGAPE is 0.87 m, which is similar to the
MLE 4D grid search method. However, the MLE 4D grid
search method, due to its computational complexity, is not a
real-time algorithm. The RMSE from the naive MLE 2D
method with an isotropic gain pattern assumption is 2.64 m.
So for Experiment 1, the RMSE from AGAPE is reduced by
67.2 percent compared to the MLE 2D method. For
Experiments 2 and 3, the RMSEs are reduced by 65.4 and
68.9 percent, respectively.

3.5.3 Effect of Number of Anchor Nodes

In the three experiments discussed above, we use 28 anchor
nodes to locate a badge in a 6.4 m by 6.4 m square area. In
some applications, we may not be able to have so many
anchor nodes. To see the effect of node number on the
localization accuracy of the AGAPE algorithm, we perform
the following tests by using RSS measurements from only a
fraction of all anchor nodes.

In the first test—Test 1, we use RSS measurements from
different numbers of equally spaced anchor nodes to locate
the badge. For example, using the data collected in
Experiment 2, we first choose the RSS measurements from
four anchor nodes at each corner of the square area. As
expected, the localization is not very accurate, the RMSE of
the position estimate is 3.36 m, and the RMSE of the
orientation estimate is 40 degrees. Next, we use the RSS
measurements from those anchor nodes whose ID numbers
are multiples of 1, 2, 3, and 4 (since the anchor nodes are
placed in a numerically increasing order around the
experimental area, these anchor nodes are equally spaced).
The RMSEs of the position and orientation estimates are
shown as dots (�) in Figs. 9a and 9b, respectively. We see
that as the node number increases, the RMSEs of position
and orientation estimates both decrease. When the node
number increases to 14, the RMSE of the position estimate
decreases to 1.30 m, and the RMSE of the orientation
estimate decreases to 18 degrees. Further increase of anchor
nodes will continue to decrease the RMSEs, however, there
are diminishing returns.

In practical scenarios, anchor nodes may not be equally
spaced. Thus in Test 2, we use RSS measurements from
randomly chosen anchor nodes. For example, we randomly
choose four anchor nodes, and run AGAPE using the RSS
measurements from these nodes. We repeat the above
procedure 100 times, and each time calculate the RMSEs of
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Fig. 8. CDF of position estimation error.

TABLE 1
Experimental Localization Results: RMSEs

from MLE (2D), MLE (4D) and AGAPE

Fig. 9. Effect of node number on estimation error. (a) Position estimation
error; (b) Orientation estimation error. (Test 1 uses equally spaced
anchor nodes, and Test 2 uses randomly chosen anchor nodes).



the position and orientation estimates. Similarly, we
randomly choose seven, 10, 14, and 20 anchor nodes. The
average RMSEs are shown as squares ( ), and the RMSE
standard deviations are shown as error bars in Fig. 9. From
Fig. 9b, we see that the average orientation RMSEs in Test 2
are all larger than the RMSEs in Test 1. For position RMSEs
shown in Fig. 9a, the average RMSEs in Test 2 are generally
larger than the RMSEs in Test 1, except for the extreme case
when the number of anchor nodes is four. Thus, the AGAPE
algorithm generally performs better if the anchor nodes are
equally spaced. However, the AGAPE algorithm is not very
sensitive to the effect of anchor nodes being nonequally
spaced. In fact, the differences between the position RMSEs
in Test 1 and the average position RMSEs in Test 2 are
always less than 0.4 m.

Finally, we compare the performance of the naive MLE
2D method with the AGAPE algorithm using randomly
chosen nodes. As shown in Fig. 9a, the MLE 2D method is
not very sensitive to the number of anchor nodes. However,
the average position RMSEs from the MLE 2D method are
always larger than those from the AGAPE algorithm for
different numbers of anchor nodes.

3.6 Estimator Lower Bounds

One might think that the introduction of an additional
unknown gain pattern model would increase the lower
bound of the variance of an estimator. To see if that is true,
we derive the Bayesian CRB [12] by including the gain
pattern model parameters as nuisance parameters. We use
the Bayesian CRB, because we have prior knowledge of the
gain directionality G1. We show that the CRB with an
isotropic gain pattern assumption derived in [6] is a special
case of the Bayesian CRB derived in this paper. Then, we
compare the Bayesian CRB with and without isotropic gain
pattern assumption. Our comparison shows that the
introduction of a gain pattern model decreases the lower
bound on the variance of a position estimator.

3.6.1 Bayesian CRB

The gain pattern model expressed in (2) can be rewritten as

gð�iÞ ¼ GI cos�i þGQ sin�i; ð15Þ

where GI ¼ G1 cos �, GQ ¼ G1 sin �.
To derive the Bayesian CRB, we assume that the

orientation of the badge � is uniformly distributed in the
range of 0 to 2�, because the orientation of the person
wearing the badge is arbitrary. Next, we assume the in-
phase component GI and quadrature component GQ of G1

are i.i.d. Gaussian distributed with zero means and variance
�2
G. GI and GQ are affected by many different aspects of the

person’s shape and size, and the badge placement, and thus
may, by a central limit argument, be close to Gaussian. This
assumption is equivalent to the assumption that G1 is
Rayleigh distributed [20], which agrees with our prior
knowledge of G1: 1) G1 must be nonnegative and thus
cannot be modeled as Gaussian or any distribution with
infinite negative support; 2) G1 may be small but is unlikely
to be exactly zero for a person wearing a badge; and 3) G1 is
very unlikely to have very large values, since gain is related
to (human) size. Improvement upon this distributional
assumption must come from a population study with many
participants, which we suggest for future research.

The Bayesian CRB is also called the Van Trees bound, or

the MSE bound [12], it is given by

varð��Þ � ID þ IPð Þ�1; ð16Þ

where �� ¼ ½zTt ; GI;GQ�T , ID is the Fisher information matrix,

and IP is the prior information matrix [12]. Note that we

only include the prior information of the gain pattern, no

prior information of the badge position is included in the

derivation of the Bayesian CRB.
All the elements in ID can be expressed as

½ID�mn ¼ �EP ED
@2 ln fD
@��m@��n

� �	 

; ð17Þ

where ED is the expectation with respect to data, EP is the

expectation with respect to prior information of ��, and fD is

the joint PDF of measurements Pi, which are assumed to be

independent Gaussian with mean �ð��Þ and variance �2.
The elements of IP can be written as

½IP �mn ¼ �EP
@2 ln fP
@��m@��n

� �
; ð18Þ

where fP is the PDF of the prior information of ��.
As shown in the supplemental material, which can be

found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TMC.2011.89, the in-

formation matrix ID þ IP can be written as

ID þ IP ¼ I�� ¼
A11 A12

A21 A22

	 

; ð19Þ

where

A11 ¼
Jxx þMxy Jxy þNxy

Jxy þNxy Jyy þMyx

	 

; ð20Þ

A12 ¼ A21 ¼
Kxx Kxy

Kxy Kyy

	 

; ð21Þ

A22 ¼
Lxx Lxy
Lxy Lyy

	 

; ð22Þ

w h e r e Jxx ¼ Jð�xit;�xitÞ, Kxx ¼ Kð�xit;�xitÞ, Lxx ¼
Lð�xit;�xitÞ, Mxx ¼Mð�xit;�xitÞ, Nxx ¼ Nð�xit;�xitÞ,
and �xit ¼ xi � xt, and

Jðu; vÞ ¼ c2

�2N

XN�1

i¼0

u

d2
it

v

d2
it

; ð23Þ

Kðu; vÞ ¼ c

�2N

XN�1

i¼0

uv

d3
it

; ð24Þ

Lðu; vÞ ¼ 1

�2N

XN�1

i¼0

u

dit

v

dit
þ 1

�2
G

; ð25Þ

Mðu; vÞ ¼ �2
G

�2N

XN�1

i¼0

1

d2
it

þ u
4

d6
it

þ u
2v2

d6
it

� 2
u2

d4
it

� �
; ð26Þ
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Nðu; vÞ ¼ �2
G

�2N

XN�1

i¼0

u3v

d6
it

þ v
3u

d6
it

� 2
uv

d4
it

� �
; ð27Þ

where c ¼ 10np
ln 10 .

3.6.2 Comparison with Related Literature

In related literature [6], a CRB is derived assuming the gain

pattern is isotropic. In terms of the Bayesian CRB derived in

this paper, the gain pattern term in the RSS-distance model

is assumed to be zero. Since the RSS-distance model used in

[6] can be considered as a special case of the RSS-distance

model used here with gð�iÞ ¼ 0, the Bayesian CRB derived

here should be the same as the CRB derived in [6] when �2
G

approaches zero. This is shown next.
By using the blockwise matrix inversion, the inverse of

the Fisher Information matrix can be written as

I�1
�� ¼

F�1
11 �A�1

11 A12F
�1
22

�F�1
22 A21A

�1
11 F�1

22

	 

; ð28Þ

where F11 ¼ A11 �A12A
�1
22 A21 and F22 ¼ A22 �A21A

�1
11 A12.

In the limit as �2
G ! 0, Mxy, Myx, Nxy all become zero, so

we have

lim
�2
G
!0
A11 ¼

Jxx Jxy
Jxy Jyy

	 

¼4 J; ð29Þ

lim
�2
G
!0
A22 ¼

Lxx Lxy
Lxy Lyy

	 

¼ 1: ð30Þ

Thus, F11 ¼ A11, and F�1
22 ¼ 0. So the inverse of the Fisher

information matrix becomes

lim
�2
G
!0
I�1
�� ¼

J�1 0
0 0

	 

: ð31Þ

Notice that (29) is the same as [6, (10)], which assumes
isotropic gain pattern. This proves that the CRB derived in
[6] is a special case of the Bayesian CRB derived here, and if
�2
G approaches zero, the Bayesian CRB converges to the

CRB derived previously.

3.6.3 Discussion

From (23) to (27), we see that the Bayesian CRB not only
depends on radio channel parameters np and �2, but also
depends on gain pattern parameter �2

G. Once we have these
three parameters, we can calculate the Bayesian CRB for an
L m by L m square area surrounded by four anchor nodes
located at each corner.

Using the same channel parameters as [6] (np=� ¼ 1:7),
the Bayesian CRBs with two different �2

G are shown in
Fig. 10. As expected, if �2

G is very close to zero, e.g.,
�2
G ¼ 0:0001, the Bayesian CRB is identical to the CRB

derived in [6], as shown in Fig. 10a. If �2
G is not close to

zero, e.g., �2
G ¼ 1, the Bayesian CRB is shown in Fig. 10b.

From the comparison of Figs. 10a and 10b, we see that the
maximum value and minimum value of Bayesian CRB are
both lower than the CRB with an isotropic gain pattern
assumption. If we introduce the “average RMSE bound” as
the average value of the square root of the Bayesian CRB
bounds over this L m by L m area, the average RMSE
bound for �2

G ¼ 1 is 0.29 m, which is also lower than the
0.30 m average RMSE bound with �2

G ¼ 0:0001.
Further, the average RMSE bounds with different �2

G are
shown in Fig. 11. Since higher �2

G represents higher
directionality G1, we see that the RMSE bound is lower if
the directionality of the gain pattern is higher. Note that we
assume the number of anchor nodes that can receive the
signal transmitted from the badge stays fixed for all �2

G.
In sum, we conclude that the RMSE bound with a

directional gain pattern assumption could be lower than the
RMSE bound with an isotropic gain pattern assumption.
For the directional gain pattern case, we would benefit
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Fig. 10. Lower bounds. (a) Lower bound with �2
G ¼ 0:0001 (minimum

value: 0.27, maximum value: 0.38); (b) Lower bound with �2
G ¼ 1

(minimum value: 0.05, maximum value: 0.36).

Fig. 11. RMSE bounds as a function of �2
G.



more, i.e., have a lower RMSE bound from a gain pattern
with a higher directionality, if the number of nodes that can
hear the badge stays fixed.

4 TRACKING

In this section, we introduce an improved tracking method
that takes advantage of the user’s orientation estimate from
the AGAPE algorithm, and that people generally walk in
the direction they are facing. We develop a novel Kalman
filter which additionally tracks user orientation, and uses
this to further improve coordinate tracking. Traditional
Kalman filters and extended Kalman filters use only
coordinate estimates as input, even though they are used
to estimate velocity (and thus direction). Our orientation
enhanced extended Kalman filter is distinct because it uses
estimated orientation as an input, in addition to providing
estimated velocity. We also compare the tracking results
from traditional Kalman filters and our OE-EKF. The results
show that without any additional measurements, the OE-
EKF is noticeably more robust to large errors.

4.1 Kalman Filter

In the traditional Kalman filter, the current state vector, which
in this case includes both mobile’s position and velocity, is
related to the previous state by the following model:

s½n� ¼ As½n� 1� þ u½n�; ð32Þ

where the state vector s ¼ ½Px; Py; Vx; Vy�T , the driving noise
u ¼ ½0; 0; ux; uy�T , and matrix A is

A ¼

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

2
664

3
775: ð33Þ

For the traditional Kalman filter without orientation in
the measurement vector, the observation model is

x½n� ¼ Hs½n� þw½n�; ð34Þ

where the measurement vector x ¼ ½x̂t; ŷt�T is from the
coordinate estimates from the AGAPE algorithm. The
measurement noise w ¼ ½wx;wy�T , and the observation
matrix H is

H ¼ 1 0 0 0
0 1 0 0

	 

: ð35Þ

4.2 Orientation-Enhanced Extended Kalman Filter

As discussed in Section 3.4, the AGAPE algorithm can
produce both position and orientation estimates of a mobile
person. Here, we propose a novel Kalman filter that uses the
output of the AGAPE algorithm as input to the tracking
algorithm. If we include the mobile person’s orientation in the
Kalman filter, the state model (32) remains the same.
However, the observation model becomes nonlinear, because
the orientation cannot be explicitly expressed as a linear
function of the state vector. Thus, the extended Kalman filter
must be used. Since we add orientation information in the
measurement vector, we call it orientation-enhanced ex-
tended Kalman filter.

The observation model of the OE-EKF is

x½n� ¼ hðs½n�Þ þw½n�; ð36Þ

where h is the nonlinear function relating state vector s to

measurement vector x.
If the mobile person is moving forward, then the

orientation� of that person can be expressed as the arctangent

of the ratio of Y component of velocity to X component of
velocity. If the mobile person is moving backward, then there

is a 180 degrees difference between � and the arctangent

function. Because in most situations people move forward,
his or her orientation can be expressed as

� ¼ atan
Vy
Vx

� �
; ð37Þ

where Vy and Vx are the Y component and X component of

velocity, respectively.
To avoid the ambiguity of � or �� from arctangent

function, instead of directly using �, we use cos � and sin�

in the measurement vector. So for the extended Kalman
filter, the measurement vector becomes

x ¼ Px; Py; cos �; sin�
� �T

: ð38Þ

Accordingly, hðsÞ in the new measurement model equation

becomes

hðsÞ ¼ Px; Py;
Vxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 2
x þ V 2

y

q ;
Vyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 2
x þ V 2

y

q
2
64

3
75
T

: ð39Þ

Then, the Jacobian matrix can be written as

J ¼ @hðsÞ
@s

¼

1 0 0 0
0 1 0 0
0 0 J33 J34

0 0 J43 J44

2
664

3
775; ð40Þ

where

J33 ¼
@

@Vx
Vx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
x þ V 2

y

q� �
;

J34 ¼
@

@Vy
Vx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
x þ V 2

y

q� �
;

J43 ¼
@

@Vx
Vy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
x þ V 2

y

q� �
;

J44 ¼
@

@Vy
Vy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
x þ V 2

y

q� �
:

Once we have the Jacobian matrix, the OE-EKF is
implemented following the basic equations in [21].

4.3 Experimental Results

Using the same data collected from the outdoor experi-

ments discussed in Section 3.5.2, and using the output of the
AGAPE algorithm, we apply the Kalman filter and OE-EKF

to track the person wearing the badge.
For Experiment 1, the position tracking results from the

Kalman filter and OE-EKF are shown in Fig. 12. We see that
due to the lack of previous measurements, the first position

tracking result is more than 1 meter away from the actual
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position for both the Kalman filter and the OE-EKF.
However, as more and more measurements are available,
the tracking errors become generally less than 0.5 meters.

From the comparison of the Kalman filter and OE-EKF
tracking results, we see that with the help of orientation
estimates from the AGAPE algorithm, the position tracking
from the OE-EKF is more accurate than that from the
Kalman filter. We note that if the variance of orientation
estimate is set to be a very large number, then the tracking
result from the OE-EKF is almost identical to that of the
Kalman filter. That is, if little weight is given to the
observation of the orientation, our OE-EKF is simplified to
the Kalman filter.

The orientation tracking results from the OE-EKF are
shown in Fig. 13. Compared to the orientation estimates
from the AGAPE algorithm, the estimated orientations from
the OE-EKF are closer to the actual orientation when the
user is walking along a straight line. However, at each
corner of the square path, when the user changes direction
suddenly by 90 degrees, the OE-EKF needs several
measurements to adjust orientation estimates to the correct
directions. This overshoot problem at points of high
acceleration is very common for a Kalman filter tracking

method, and can be minimized with more complicated
models of movement dynamics and measurement noise
[22], however, these are not in the scope of this paper.

To quantify the improvement that the gain pattern and
the orientation estimate from the AGAPE algorithm can
make in tracking, the RMSEs from the following three
tracking methods are listed in Table 2.

. KF without gain: the Kalman filter using position
estimate from the naive MLE method with an
isotropic gain pattern assumption.

. KF with gain: the Kalman filter using position
estimate from AGAPE.

. OE-EKF: the extended Kalman filter using both
position and orientation estimates from AGAPE.

From Table 2, we see that the RMSEs from KF without
gain method are all above 2.0 m for three experiments. For
KF with gain method, which only uses position estimates
from AGAPE as input, the average RMSE of the three
experiments is 0.53 m. Since both the position estimate and
orientation estimate from the AGAPE algorithm are used in
OE-EKF, the RMSEs from OE-EKF method are further
reduced compared to KF with gain method for all three
experiments.

The CDFs of the position tracking errors from these three
tracking methods are shown in Fig. 14. The median error for
KF without gain method is about 2.3 m, while the median
errors for KF with gain and OE-EKF methods are both
about 0.4 m. However, OE-EKF method has 95 percent of
tracking errors less than 0.76 m, while KF with gain method
has 95 percent of tracking errors less than 0.90 m. In this
case, OE-EKF shows 16.7 percent improvement. Using the
95 percentile of errors shows the robustness to large errors.
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Fig. 12. Position estimates from KF ( ) and from OE-EKF (�) (only the
first round tracking results from Experiment 1 are shown here).

Fig. 13. Orientation estimates from OE-EKF (�) and from AGAPE (4).

TABLE 2
Experimental Tracking Results: RMSEs from
KF without Gain, KF with Gain and OE-EKF

Fig. 14. CDFs comparison of different tracking methods using data from
Experiment 1.



The experimental results show that OE-EKF is more robust
to large errors without any additional measurements.

In OE-EKF, we assume that people walk forward with
the badge on their front. If badges were consistently worn
on a different side, that side could be estimated and the
tracking algorithm adjusted accordingly. If this assumption
was often violated (e.g., if the person walked backward or
sideways), KF with gain method would likely perform
better than OE-EKF.

5 RELATED WORK

In wireless sensor network localization, many kinds of
measurements can be used: angle of arrival (AOA), time of
arrival (TOA), time difference of arrival (TDOA), received
signal strength, etc. [23]. This work uses estimated angle
(orientation) of the badge in the position estimation,
however, it is not like the AOA-based localization. In
AOA-based localization, anchor nodes measure the angle
from which power arrives at a receiver using a directional
antenna. We do not use any directional antenna—anchor
nodes only measure RSS. Moreover, we estimate a user’s
facing direction (orientation), not the direction to any other
device. For RSS-based localization, many algorithms have
been proposed to improve the localization accuracy [24], [7],
[25]. The performance of RSS-based localization algorithms
are limited by the irregularities in measured RSS. Variation
in RSS is caused by the presence of multipath, shadowing
caused by the presence of obstacles in the environment, and
also nonuniformity of the antenna gain pattern [26], [27].
Little effort has been made toward including gain pattern in
model-based RSS localization algorithms.

Many localization studies have already shown the effect
of human body orientation on RSS measurements [1], [8],
[9], [10]. Kaemarungsi and Krishnamurthy [10] examine the
effects of the human body orientation on RSS measurements
using four different user’s orientations (facing North, West,
South, and East). Their experiments show that the mean
RSS of one orientation, at which the user body blocks the
LOS could be more than 9.0 dB lower than that of another
orientation. Experiments performed by King et al. [5]
measure the RSS every 45 degrees while a person carrying
a mobile device turns around. Their experimental results
show that the RSS increases nearly 15 dB in case of a direct
LOS between a receiver and an access point. In this paper,
we also perform a measurement campaign to study the
variation of RSS as a function of user orientation. The
results of our measurement campaign agree with the
findings of King et al. [5], and we further provide a model
that quantifies RSS measurements as a function of user
orientations.

Other research has independently determined that user
orientation is significant in improving the localization
accuracy [28], [29]. However, these methods determine the
effect of the user orientation based on a separate training
campaign, which consumes significant human effort and
time. This paper provides a statistical model to quantify the
effect of human body orientation on RSS, which could
simplify the fingerprint database construction. Thus, our
work can improve model-based localization, and is also
complementary to fingerprint-based localization.

6 CONCLUSION

In this paper, we model the variation of RSS due to the
human body as a cosine function of the orientations of the
body, and we propose a first-order sinusoidal model that is
useful for user orientation estimation from multiple RSS
measurements. We implement the AGAPE algorithm to
estimate both the position and the orientation of the user.
We also implement an OE-EKF by including orientation
estimate in tracking. Experimental results show that
estimating the nonisotropic gain pattern can greatly
improve both localization and tracking of people in RF
sensor networks.
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