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Abstract—Device-free localization systems, such as variance-based radio tomographic imaging (VRTI), use received signal strength

(RSS) variations caused by human motion in a static wireless network to locate and track people in the area of the network, even

through walls. However, intrinsic motion, such as branches moving in the wind or rotating or vibrating machinery, also causes RSS

variations which degrade the performance of a localization system. In this paper, we propose a new estimator, least squares

variance-based radio tomography (LSVRT), which reduces the impact of the variations caused by intrinsic motion. We compare the

novel method to subspace variance-based radio tomography (SubVRT) and VRTI. SubVRT also reduces intrinsic noise compared to

VRTI, but LSVRT achieves better localization accuracy and does not require manually tuning additional parameters compared to VRTI.

We also propose and test an online calibration method so that LSVRT and SubVRT do not require “empty-area” calibration and thus

can be used in emergency situations. Experimental results from five data sets collected during three experimental deployments show

that both estimators, using online calibration, can reduce localization root mean squared error by more than 40 percent compared to

VRTI. In addition, the Kalman filter tracking results from both estimators have 97th percentile error of 1.3 m, a 60 percent reduction

compared to VRTI.

Index Terms—Wireless sensor networks, sensing, statistical signal processing

Ç

1 INTRODUCTION

DEVICE-FREE localization (DFL) using radio frequency
(RF) sensor networks is the use of channel measure-

ments between static radio transceivers deployed around
an area of interest to locate people and objects moving
within it. DFL has particular application in security and
emergency applications, e.g., detecting intruders in indus-
trial facilities, and helping police and firefighters track peo-
ple inside a building during an emergency [1]. In these
scenarios, the people being located cannot be expected to
participate in the localization system by carrying radio
devices, thus standard radio localization techniques [2] are
not useful.

Various RF measurements including ultra-wideband
(UWB) and received signal strength (RSS) have been pro-
posed and applied to detect, locate and track objects and
people who do not carry radio devices in an environment
[3], [4], [5], [6], [7], [8]. Compared to cameras and infrared
sensing methods, RF sensors have the advantage of pene-
trating non-metal walls and smoke [1]. While UWB meas-
urements are expensive, RSS measurements are inexpensive
and available in standard wireless devices and have been
used in different device-free localization studies with sur-
prising accuracy [6], [8], [9]. These RSS-based localization
methods essentially use a windowed variance of RSS

measured on static links. For example, [8] deploys an RF
sensor network around a residential house and uses sample
variance during a short window to track people walking
inside the house; [9] places RF sensors on the ceiling of a
room, and track people using the received signal strength
indicator (RSSI) dynamic, which is essentially the variance
of RSS measurements, with and without people moving
inside the room. In this paper we focus on using RSS meas-
urements to locate and track human motion. We use win-
dowed variance to describe the various functions of RSS
measurements recently used in different localization and
tracking studies [6], [8], [9], and we call them methods for
variance-based device-free localization.

This paper introduces and studies methods to make
variance-based DFL more robust to noise. For variance-
based localization and tracking, variance can be caused by
two types of motion: extrinsic motion and intrinsic motion.
Extrinsic motion is defined as the motion of people and
other objects that enter and leave the environment. Intrinsic
motion is defined as the motion of objects that are intrinsic
parts of the environment, objects which cannot be removed
without fundamentally altering the environment. If a signif-
icant amount of windowed variance is caused by intrinsic
motion, then it may be difficult to detect extrinsic motion.
For example, rotating fans, leaves and branches swaying in
wind, and moving or rotating machines in a factory all may
impact the RSS measured on static links. Also, if RF sensors
are vibrating or swaying in the wind, their RSS measure-
ments change as a result. Even if the receiver moves by only
a fraction of its wavelength, the RSS may vary by several
orders of magnitude as a result of small-scale fading [10],
[11]. We call variance caused by intrinsic motion and extrin-
sic motion, the intrinsic signal and extrinsic signal, respec-
tively. We consider the intrinsic signal to be “noise”
because it does not relate to extrinsic motion which we wish
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to detect and track. One example of intrinsic signal is
shown in Fig. 1, in which the RSS measurements are
recorded during an “empty-area” offline calibration period,
when tree branches and leaves sway strongly in wind [12].
Considering there is no human motion in the network, that
is, no extrinsic motion during the calibration, the high var-
iations of RSS measurements are caused by intrinsic
motion, in this case, wind-induced motion. To be practical,
variance-based localization methods must identify and
reduce the intrinsic signal.

In this paper, we propose and compare two estimators
that reduce the effect of intrinsic motion and improve the
robustness of VRTI [8] under noisy conditions. The first esti-
mator uses the subspace decomposition method, which has
been used in spectral estimation, sensor array processing,
and network anomaly detection [13], [14], [15], [16].
We apply this method to VRTI, which leads to subspace
variance-based radio tomography (SubVRT). SubVRT was
introduced in [12], and is explored and tested in greater
depth in this paper, and compared to a second estimator
which is first presented here.

The major contribution of this paper is to propose and
test a new robust estimator – least squares variance-based
radio tomography (LSVRT). While both SubVRT and
LSVRT are significantly more robust to intrinsic motion
than VRTI, one advantage of LSVRT over SubVRT is that it
does not require manual tuning of any additional parame-
ters compared to VRTI. In contrast, SubVRT has a parameter
k that must be manually set. Further, experimental results
show that LSVRT has consistently better performance than
SubVRT across all experiments conducted for this paper.

Another contribution of this paper is the testing of an
online calibration procedure for SubVRT and LSVRT. An
“empty-area” calibration (offline calibration) using meas-
urements recorded during a period without people in the
network is effective for statistical characterization of the
intrinsic signal [12]. However, knowing when the area is
empty may not be possible in emergency situations. To
enable SubVRT and LSVRT in those situations, we propose
an online calibration method in which RSS measurements
are collected for statistical characterization of the intrinsic
signal when the maximum pixel intensity of a radio tomo-
graphic image is low.

This paper presents new quantitative comparisons of the
new methods with VRTI. Localization results from five data
sets, collected during three experiments, show that both
estimators using online calibration can reduce the root
mean squared error (RMSE) of the location estimate by
more than 40 percent compared to VRTI. The LSVRT
method proposed in this paper consistently outperforms
SubVRT in localization accuracy across all experiments. A
new experiment presented here shows that as the level of
intrinsic noise increases, the ability of both SubVRT and
LSVRT to reduce the level of noise increases as well. Fur-
ther, we use the Kalman filter to track people using localiza-
tion estimates from SubVRT and LSVRT. The results show
that tracking errors from SubVRT have a 97th percentile
error of 1.4 m, a 65 percent improvement compared to
VRTI, while the 97th percentile error from LSVRT is less
than 1.2 m, a 70 percent improvement.

To summarize, in this paper we 1) introduce a new
estimator, least-squares variance-based radio tomography;
2) introduce a new online calibration method which does
require the user to know when the area of interest is empty,
3) compare and evaluate SubVRT and LSVRT estimators by
using data sets collected in new and past experiments in dif-
ferent environmental conditions; and 4) quantify tracking
improvements using a Kalman filter in combination with
SubVRT and LSVRT.

The rest of this paper is organized as follows: Section 2
formulates the subspace decomposition and least squares
(LS) methods, and proposes an online calibration method.
Section 3 describes five data sets collected in three experi-
ments including new experiments first reported in this
paper, Section 4 shows the experimental results, and
Section 5 investigates the Kalman filter tracking. Related
work is presented in Section 6, and the conclusion is given
in Section 7.

2 METHODS

In this section, we describe variance-based radio tomo-
graphic imaging (VRTI), a through-wall imaging method
introduced in [8], which serves as a baseline for comparison
for our new methods. Then we extend the VRTI method by
introducing the SubVRT and LSVRT estimators, and com-
pare the two.

2.1 Problem Statement

We assume an RF sensor network with N sensors (radio
transceivers) is deployed in an area of interest. We use zs;j
to denote the coordinate of sensor j for j 2 f1; . . . ; Ng. The
deployment area has both extrinsic motion and intrinsic
motion, as defined in the Introduction. The goal of all of the
methods in this paper is to estimate an image of the pres-
ence of extrinsic motion. We discretize space into P pixels

of a physical space and define x ¼ ½x1; . . . ; xP �T , where
xi ¼ 1 if extrinsic motion occurs in pixel i, and xi ¼ 0 other-
wise. We denote the center coordinate of pixel i as zi.

To enable motion image estimation, each sensor measures
the RSS of packets received frommany other sensors.We use
sl;t to denote the RSS measured at node il sent by node jl at
time t 2 Z, where il and jl are the receiver and transmitter
number for link l, respectively. We assume L directional

Fig. 1. Intrinsic signal measurements: RSS measurements from three
links during an offline calibration period (when no people are present in
the environment) of one experiment, in which we observe significant
wind-induced intrinsic motion.
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linksmeasure RSS, where in general,L � NðN � 1Þ since not
all pairs of sensorsmay be connected.

We denote the windowed RSS variance as

yl;t ¼ 1

m� 1

Xm�1

i¼0

ð�sl;t � sl;t�iÞ2; (1)

wherem is the length of the window, and �sl;t ¼ 1
m

Pm�1
i¼0 sl;t�i

is the sample average in this window period. We let

yðtÞ ¼ ½y1;t; . . . ; yL;t�T be the vector of windowed RSS vari-
ance from all L links at time t. If we do not need to represent

time, we simplify the notation to y ¼ ½y1; . . . ; yL�T .
We further use yc to denote the measurements collected

during the calibration period, when no people are present
in the environment; and we use yr to denote the measure-
ments from the real-time operation period.

We note two things. Transmit power does not affect yl;t
because �sl;t and sl;t�i in (1) are equally affected by any
change in transmit power. However, transmit power must
be high enough so that a receiver can reliably estimate RSS,
that is, packets are received even when a person obstructs
the link. Next, we assume any changes in transmit power
are slow such that it can be considered constant within m
samples so that the short-term changes in sl;t are due to the
channel, not to the transmitter.

2.2 Baseline Method: VRTI

Work in [8] has shown the efficacy of a linear model that
relates the motion image x to the RSS variance yr:

yr ¼ Wxþ n; (2)

where n is an L-length noise vector including intrinsic
motion and measurement noise, and W is an L� P matrix
quantifying how much of motion in each pixel impacts each
link measurement. The weighting of pixel p on link l is for-
mulated as [8]

Wl;p ¼ 1ffiffiffiffiffiffiffiffiffi
dil;jl

p f if dil;p þ djl;p < dil;jl þ dw
0 otherwise;

�
(3)

where dil;jl is the Euclidean distance between two sensors il,
jl on link l located at zs;il and zs;jl ; djl;p is the Euclidean dis-

tance between sensor jl and zp, the center coordinate of
pixel p; dil;p is the Euclidean distance between sensor il and

pixel p; dw is a tunable parameter controlling the ellipse
width, and f is a constant scaling factor. Essentially, column
p of the W matrix describes a model for how link variances
are affected by a moving person’s presence in pixel p.

VRTI is the method proposed in [8] to estimate image x
from the link measurements yr. Regularization is necessary
for this ill-posed inverse problem, and Tikhonov regulariza-
tion is used [8], which results in the image estimator,

x̂ ¼ P1yr

P1 ¼ ðWTW þ aQTQÞ�1WT ;
(4)

where a is a regularization parameter, andQ is the Tikhonov
matrix, which is calculated by using the difference operations
in both the vertical and horizontal directions of an image, as
discussed in [8]. One benefit of (4) is thatP1 does not need to
be recomputed as long as the sensors are stationary.

The vector x̂ has in element i the estimated motion in
pixel i. Pixel i is centered at coordinate zi, and we display
an arbitrary motion image by plotting xi at coordinate zi for
each pixel i ¼ 1; . . . ; P .

The calculation of the projection matrix in (4) requires the
inverse of a P � P matrix, which has complexity order P 3.
However, this is calculated once, and the real-time estima-
tion of x̂ requires only one matrix multiply, which uses at
most LP operations.

2.3 Subspace Decomposition Method

The subspace decomposition method has been widely used
in spectral estimation, sensor array processing, etc. [13], [16]
to improve estimation performance in noise. It is closely
related to principal component analysis (PCA), which is
widely used in finding patterns in high dimensional data
[17]. Essentially, it divides the space of the measurements
into two orthogonal subspaces, one we believe is very
noisy and one that is not, and only use the portion of the
measurement which is contained in the latter subspace.

To find this subspace decomposition, we first estimate
the covariance matrix Cyc

as

C�
yc

¼ 1

M � 1

XM�1

t¼0

�
yðtÞc � mmc

��
yðtÞc � mmc

�T
; (5)

where M is the number of sample measurements, yðtÞc is
the calibration measurement vector yc at time t, mmc ¼
1
M

PM�1
t¼0 yðtÞc is the sample average. Then, we perform singu-

lar value decomposition (SVD) on C�
yc

C�
yc

¼ ULUT ; (6)

where the unitary matrix U ¼ ½u1; . . . ;uL� and the diagonal
matrix L ¼ diag �1; . . . ; �Lf g. Right multiplying U on both
sides of (6), we have

C�
yc
ui ¼ �iui; (7)

where ui is the eigenvector corresponding to the ith eigen-
value �i. If the eigenvalues are in descending order, the first
principal component u1 points in the direction of the maxi-
mum variance in the calibration measurements, the second
principal component u2 points in the direction of the maxi-
mum variance remaining in the measurements, and so on.
Examples of eigenvalues from calibration measurements
are shown in Fig. 6 in Section 4.1. The first few eigenvalues
are much larger than the others, thus most of the variance in
the calibration measurements is in the subspace spanned by
these few principal components. After obtaining eigenval-
ues from calibration measurements, we decide how many
principal components, k � L, are necessary to capture the
majority of the variations (we discuss selection of k in more
detail in Section 4.3). In subspace decomposition, we will
remove any part of the measurement vector y which falls in
the subspace spanned by these k principal components, and
by doing so, we eliminate a large proportion of the intrinsic
noise. Note that these k components also contain portions of
the extrinsic signal and so k should be kept as low as possi-
ble. Regardless, we describe the space spanned by the first k

principal components, Û ¼ ½u1;u2; . . . ;uk�, as the intrinsic
signal subspace; and we describe the space spanned by the
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next L� k principal components, ~U ¼ ½ukþ1;ukþ2; . . . ;uL�, as
the extrinsic signal subspace.

Once the two subspaces are constructed, we decompose
the measurement vector y into two components—intrinsic
signal component ŷ and extrinsic signal component ~y:

y ¼ ŷþ ~y: (8)

The linearity of this approximation is by definition here, as
the two subspaces are orthogonal by the properties of the
SVD. However, linearity in RSS has been justified in prior lit-
erature [8], [18].We also note that the “spatial characteristics”
of intrinsic vs. extrinsic signal are fairly different. For
example, intrinsic signal caused by wind appears at the
same time everywhere in the area that has branches or
bushes, for example, whereas people will not tend to be
simultaneously moving in exactly those same positions.

Since the principal components are orthogonal, the
intrinsic signal component ŷ and the extrinsic signal compo-
nent ~y can be formed by projecting y onto the intrinsic sub-
space and the extrinsic subspace, respectively:

ŷ ¼ PIy ¼ ÛÛTy (9)

~y ¼ PEy ¼ ðI � ÛÛT Þy; (10)

where PI ¼ ÛÛT is the projection matrix for the intrinsic
subspace, and PE ¼ I �PI is the projection matrix for the
extrinsic subspace.

The key idea of SubVRT is to use the decomposed extrin-
sic signal component of the measurements in VRTI. We
project the real-time measurement vector yr onto the extrin-
sic subspace to obtain the extrinsic signal component

~yr ¼ ðI � ÛÛT Þyr. Then, we replace yr in (4) with ~yr and
obtain the solution of SubVRT:

x̂Sub ¼ P2yr

P2 ¼ ðWTW þ aQTQÞ�1WT ðI � ÛÛT Þ: (11)

From (11), we see that the solution is a linear transformation
of the measurement vector. The transformation matrix P2 is
the product of the transformation matrix P1 in (4) with the
projection matrix for the extrinsic subspace PE : P2 ¼ P1PE .
Since the transformation matrix P2 does not depend
on instantaneous real-time measurements, it can be pre-
calculated, and it is easy to implement SubVRT for real-time
applications. Calculation of x̂ from yr requires LP multipli-
cations and additions.

2.4 Least Squares Method

As shown above, SubVRT performs SVD on the covariance
matrix of the calibration measurements. Here, we introduce
our LSVRT estimator formulated as a least squares solution,
which uses the inverse of the covariance matrix.

2.4.1 Formulation

To derive the least squares solution to the linear model
expressed in (2), the cost function can be written as [19]:

JðxÞ ¼ kWx� yrk2Cn
þ kx� xak2Cx

¼ ðyr �WxÞTC�1
n ðyr �WxÞ þ ðx� xaÞTC�1

x ðx� xaÞ;
(12)

where knk2Cn
indicates weighted quadratic distance nTC�1

n n,
Cn is the covariance matrix of the noise term n, xa is the
prior mean of x, and Cx is the covariance matrix of x.

Taking the derivative of (12) and setting it to zero results
in the LSVRT solution:

x̂LS ¼ ðWTC�1
n W þ C�1

x Þ�1ðWTC�1
n yr þ C�1

x xaÞ: (13)

Since the prior information xa can be included in the track-
ing period, here we assume xa is zero, then (13) becomes:

x̂LS ¼ P3yr

P3 ¼ ðWTC�1
n W þ C�1

x Þ�1WTC�1
n :

(14)

The LSVRT formulation can be also justified from a
Bayesian perspective. If we assume yr conditioned on x is
Gaussian distributed with mean Wx and covariance matrix
Cn, and x is Gaussian distributed with mean xa and covari-
ance matrix Cx, then the maximum a posteriori (MAP)
estimator, which maximizes pðxjyrÞ, is equivalent to mini-
mizing the cost function in (12). Under the same Gaussian
assumption, the minimum mean-squared error (MMSE)
estimator is equivalent to the MAP estimator. Thus the LS
solution (13) can also be seen as the MAP or MMSE estima-
tor under these Gaussian assumptions.

2.4.2 Covariance of Noise

For the LSVRT solution (13), the inverse of the covariance
matrix Cn is needed. During the calibration period, we
assume that there is no extrinsic motion in the signal, so
x ¼ 0 and yc ¼ n. Thus Cn ¼ Cyc

.

Consider the inverse of the sample covariance matrix C�
yc
.

From (6), The inverse of C�
yc
is given as,

½C�
yc
��1 ¼ UL�1UT ; (15)

where L�1 is a diagonal matrix with ith element 1=�i [13].
The problem is that C�

yc
is estimated using a sample of size

M, and M is typically less than L, the dimension of the
vector. Thus there will be at least L�M zero eigenvalues �i

in the SVD of the sample covariance matrix (equivalently,
the rank of C�

yc
is at mostM). Thus its inverse is not defined.

For high dimensional covariance matrix estimation prob-
lems, many regularized covariance matrix estimators have
been proposed [20], [21]. Here, we use the Ledoit-Wolf
estimator, which is a linear combination of the sample
covariance matrix and a scaled identity matrix, and is
asymptotically optimal for any distribution [20]:

Cn ¼ nmI þ ð1� nÞC�
yc
; (16)

where C�
yc

is the sample covariance matrix of noisy calibra-
tion measurements yc, m is the scaling parameter for the

identity matrix I, and n is the shrinkage parameter that
shrinks the sample covariance towards the scaled identity
matrix. Again, since there is no extrinsic motion during cali-
bration period, that is, x ¼ 0, thus yc ¼ n, and we approxi-

mate C�
yc

that is also the sample covariance of n. We follow

[20] to automatically calculate parameters n and m from the
calibration measurements. From the Bayesian perspective,
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this covariance matrix estimator can be seen as the combina-
tion of the prior information and sample information of the
covariance matrix.

We can rewrite (16) using (6) and the fact that UUT ¼ I
since U is an orthogonal matrix

Cn ¼ nmUUTI þ ð1� nÞULUT ¼ UDUT ; (17)

where D is a diagonal matrix with ith element
nmþ ð1� nÞ�i. This form allows the inverse to be written as

C�1
n ¼ U ~S�1UT ; (18)

where ~S�1 is a diagonal matrix with ith element 1
nmþð1�nÞ�i.

In this form, it is clear that with n;m > 0 there will be

no divide-by-zero issues in the inverse of the estimated

noise covariance matrix.

2.4.3 Covariance of Image

The LSVRT solution also requires the covariance matrix Cx.
As a means to generate a general statistical model for Cx,
we assume the positions of people in the environment can
be modeled as a Poisson process. Poisson processes are
commonly used for modeling the distribution of randomly
arranged points in space.

Analysis of Poisson point processes leads to a covariance
function that is approximately exponentially decaying [22],
and the exponential spatial covariance model is shown to be
effective to locate people in an RF sensor network [23].
Thus, in this paper, we use an exponentially-decaying func-
tion as the covariance matrix of the human motion

Cx½ �i;j¼
s2
x

d
exp �kxj � xikl2

d

� �
; (19)

where s2
x is the variance of any element of the image vector

x, d is a space constant, and kxj � xikl2 is the Euclidean dis-

tance between xi and xj.

2.5 Comparison of Two Methods

The SubVRT estimator and the LSVRT estimator are closely
related. Both build image estimators using the covariance of
the link variance measurements yc estimated from calibra-
tion measurements. In this section, we show connections
between these two estimators.

Recall that SubVRT uses the SVD as given in (6). We can
rewrite the extrinsic subspace projector ðI � ÛÛT Þ as USUT ,

where S is a diagonal matrix with its first k entries set to 0
and remaining entries set to 1. As such, the projection
matrix for SubVRT can be written as

P2 ¼ ðWTW þ aQTQÞ�1WTUSUT : (20)

Next consider the LSVRT estimator from (14). Using (18),
we can write the projection matrix for LSVRT as:

P3 ¼ ðWTC�1
n W þ C�1

x Þ�1WTU ~S�1UT : (21)

Comparing the two, we see that S in (20) is replaced by ~S
in (21). In LSVRT, the ith “principal component” ui (the ith
column of U) is weighted approximately by 1=�i, that is,
one over the variance of noise in that component. When the
variance �i is high, the component is downweighted. In
comparison in SubVRT, the ith principal component is
weighted by 0 if the variance �i is one of the k highest; or 1
if not. Essentially, SubVRT approximates 1=�i as 0 or 1,
completely zeroing out signals in the k noisiest dimensions
and treating signals in other dimensions equally. An advan-
tage with LSVRT is that no parameter (like k in SubVRT) is
required to be tuned—recall that n and m are automatically
determined by the Ledoit-Wolf method.

From the former part of (20) and (21), we see that the
LSVRT estimator includes C�1

n as a weight matrix in

WTC�1
n W , while the SubVRT estimator just uses WTW . We

also see that the inverse of the covariance matrix C�1
x in the

LSVRT solution plays the role of the regularization term

aQTQ in the SubVRT solution.
In terms of computational complexity, both SubVRT and

LSVRT require calculation of the SVD of an L� L covari-

ance matrix, requiring on the order of L3 operations. The
Ledoit-Wolf estimation of covariance matrix adds addi-
tional complexity compared to the sample covariance
matrix calculation (5), which is used in SubVRT. However,
these calculations are done once when the calibration data
has been collected. Real-time estimation of x̂ requires only
one matrix multiply which uses at most LP operations, the
same as VRTI.

2.6 Online Calibration

Note that the above SubVRT and LSVRT formulations both
require calibration measurements to capture the intrinsic

Fig. 2. Pictures of two experiments.
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motion. In emergency applications, we cannot expect to be
able to perform calibration when the network area is empty.

We propose an online calibration method inspired by
background subtraction techniques in the field of computer
vision. Many background subtraction techniques use pixel-
based features, such as pixel intensity, edges, for back-
ground modeling [24], [25]. For VRTI, we find that the high-
est pixel intensities, when there are people moving in the
network area, are typically much higher than those when
no people are moving or present in the network, i.e., pixel
intensities of background noise. We propose to use pixel
intensity to coarsely distinguish between times when a
person is or is not present.

We denote the highest pixel intensities of VRTI images
when there are people in the network (foreground) and
there are no people (background) as x̂f

q and x̂b
q, respectively.

An example of x̂b
q and x̂f

q time series is shown in Fig. 3. We

see that during the online period when a person is walking

inside the network (from sample index 160 to 440), all x̂f
q

values are above 0.5, while most background pixel intensi-

ties x̂b
q are below 0.5. We also notice that the x̂bq values from

sample index 50 to 100 are higher than those at other sample
indexes. This is due to the effect of high wind, that is, intrin-
sic motion from tree leaves and branches in a high wind
period causes significant RSS variations. Thus the highest
pixel intensities in this period are much higher than those
when the wind is not very strong.

We assume that there will be some periods of time when
there are no people moving and propose the following pro-
cedure for online calibration. First, we run our SubVRT or
LSVRT estimator for incoming link measurement to find x̂q.
Note that at the start when no calibration measurements are
available, both SubVRT and LSVRT estimators are replaced
with VRTI. Whenever the highest pixel intensity x̂q is below
a threshold, we record y as a calibration measurement.
When there are more than a threshold number of calibration
measurements,1 we use them to update the estimator’s pro-
jection matrix according to SubVRT formulation (11) or
LSVRT formulation (14). After we run the estimator, we cal-
culate x̂q, and repeat the procedure above. A flowchart of
this online calibration method is shown in Fig. 4.

We note that online calibration suffers from a chicken-
and-egg problem of estimating the extrinsic motion image
and knowing when the data is due solely to intrinsic
motion. Sometimes intrinsic motion causes the max image
intensity to be above the threshold, and thus that measure-
ment is not included in the calibration. Rarely, extrinsic
motion is such that image maximum is low, and it is
included in the calibration. However, we show experimen-
tally in Section 4.2 that as long as the threshold is set reason-
ably, sufficient calibration measurements are recorded
during intrinsic motion to enable SubVRT and LSVRT to be
more robust to noise.

Further, online calibration requires that, at some point
during the online calibration period, no people are moving
in the covered area. If people are always moving, then
SubVRT and LSVRT would never be able to build a covari-
ance model, and would revert to VRTI. In future work, one
might divide a large coverage area into sub-areas, and sepa-
rately perform online calibration for each sub-area. Alterna-
tively, one may estimate where people are moving, draw
large circles around their estimated locations, and then
assume that links that do not intersect any circle are affected
only by noise [26], and then estimate the covariance matrix
using known techniques for estimation with censored data
[27]. However, these ideas are not explored in this paper.

2.7 Performance Quantification

To quantify the performance of an image estimator, we use
the localization error in situations when one person is pres-
ent. Multiple people can certainly be tracked using radio
tomography [18], [28], but localizing a single person is sim-
ple and is sufficient to quantitatively compare the perfor-
mance of different imaging estimators. When a single
person is present, her position ẑ is estimated as the center
coordinate of the pixel with maximum value:

ẑ ¼ zq where q ¼ argmax
p

x̂p; (22)

where zq is the center coordinate of pixel q and x̂p is the pth
element of image estimate x̂. Then, the localization error is
defined as: eloc ¼ kẑ� zkl2 , where z is the actual position of

the person, and k 	 kl2 indicates the Euclidean norm.

3 EXPERIMENTS

3.1 RF Sensor Network Testbed

We deploy a sensor network of ZigBee TelosB nodes as our
testbed. All nodes are programmed with a TinyOS token
passing protocol called Spin [29]. At any particular time,

Fig. 3. Highest pixel intensities from VRTI with and without people mov-
ing in the network (using data from Experiment 2).

Fig. 4. Flowchart of the online calibration method.

1. We discuss the effect of all threshold values associated with this
online calibration method in Section 4.2.
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one node (the node with the token) broadcasts a packet,
while all the other nodes measure the RSS of the received
packet. A base station connected to a laptop also overhears
the packet. The packet contains the transmitter id and a list
of all of the RSS values that node has recorded in the last
round of Spin. The next node (one higher in transmit id)
takes the next turn broadcasting a packet. Nodes transmit in
turn until all nodes have transmitted, which completes one
round of Spin, and then the process repeats with the first
node starting the next round of Spin.

When round t of Spin completes, all pairwise measure-
ments from the network have been overheard by the base

station and are recorded to fsl;tgl, and variance yðtÞ is com-
puted. At this point, a real-time system would immediately
calculate an image estimate x̂ that would be calculated from
(4), (11) or (14). In our experiments, we record fsl;tgl so that
all methods can be tested across a range of parameters to
show quantitative performance comparisons in Section 4.

Note that the transmission interval between two nodes is
set by the Spin protocol so that three link measurements are
recorded each second to match the speed of human motion.
For faster human motion, we can increase the transmission
frequency at the cost of more power consumption. When a
packet is not received, or if it fails the packet CRC check, we
do not use the RSS measurement for that packet. It is rare in
our experimental network to see more than two packet
drops in a row, so such data loss causes less than one second
of delay on a link.

3.2 Experiment Location

In our experiments, thirty-four TelosB nodes are deployed
outside the living room of a residential house. The living
room is an addition, so the wall between the kitchen and liv-
ing room was originally an external wall made of brick. The
other walls are Hardy board (a concrete and plastic compos-
ite) and wood. As shown in Fig. 5, eight nodes are placed in
the kitchen (on the counter), six nodes are placed outside the
windows of the living room. The other 20 nodes are all
placed on polyvinyl chloride (PVC) stands outside the house.

3.3 Experiment Details

We use measurements from several data sets in this paper.
In all data sets, we first record data from the sensors during

an empty-room calibration period. Next, a person walks
around a marked path (A-B-C-D as shown in Fig. 15) in the
living room at a constant speed of about 0.5 m/s, using a
metronome and a metered path so that the position of the
person at any particular time is known. A variety of intrinsic
noise conditions are tested in three experiments:

� Experiment 1: We use the data set from the measure-
ments conducted in March, 2009 reported by [8],
which was performed in the same house with identi-
cal setup, as our “Experiment 1”. Experiment 1 is
performed on a clear winter day with no wind. As
shown in our video [30] (a snapshot is shown in
Fig. 2a), there are no leaves on branches, and no
wind is observed during Experiment 1. The lack of
leaves or wind make this data set contain the least
intrinsic noise of any of those that we collected. For
this experiment, have 47 seconds (M ¼ 140) of meas-
urements collected during a calibration period.

� Experiment 2: We conduct another experiment at the
same house with identical setup on a windy day in
May, with leaves on the trees and long grass in the
yard next to the house. From video recorded during
Experiment 2 (one snapshot is shown in Fig. 2b), one
can see that wind causes grass, leaves and branches
to sway [30]. The wind also causes the PVC stands
supporting the nodes to move. For this experiment,
we collect one minute (M ¼ 170) of measurements
during a calibration period.

� Experiment 3: The first two experiments contained
intrinsic motion that we did not control. In our final
experiment, we attempt to control intrinsic motion
using four electric fans inside of the living room. The
experiment is conducted on a windy summer day.
The first data set (3a) is recorded with no fans on.
The second data set (3b) is recorded with one rotat-
ing fan2 turned on. The third data set (3c) is recorded
with all four fans on. There are plants and objects in
the room which move somewhat when the fan blows
on them. For each data set 3a, 3b, and 3c, we collect
one minute (M ¼ 170) of measurements during a
calibration period.

4 RESULTS

4.1 Eigenvalues and Eigen-Networks

We propose in Section 2.3 that most of the intrinsic noise can
be contained within a low-dimensional subspace. To verify
this via experiment, we use PCA on the calibration meas-
urements from Experiments 1 and 2. The eigenvalues of Cyc
from these two experiments are shown in Fig. 6. Because
there is more intrinsic motion in Experiment 2, we see that
the largest eigenvalue from Experiment 2 is almost twice as
large as that from Experiment 1. For Experiment 1, the first
four eigenvalues are much larger than the other eigenval-
ues, thus the subspace spanned by the four corresponding
eigenvectors can capture most of the intrinsic signal. How-
ever, for Experiment 2, there are more large-valued

Fig. 5. Map of tested area with node locations. A tree (shaded) is at the
right side of the exterior. Video was recorded from camera location
indicated.

2. The fan is motor-controlled to change its facing direction, in addi-
tion to rotating the fan blades.
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eigenvalues. Thus more eigenvectors are necessary to cap-
ture the majority of the variations in the measurements.

Since each of the principal components used to construct
the intrinsic subspace is an eigenvector of the covariance
matrix of the network measurements, and each element in
an eigenvector is from an individual link, we refer these
eigenvectors ui as “eigen-networks”. The first eigen-

network u1 ¼ ½u11; u12; . . . ; u1L�T points in the direction of
the maximum variance of the calibration measurements yc.

We show the first eigen-network u1 graphically in Fig. 7.
We see the links with u1l values higher than 30 percent of
the maximum value are all in the lower right side of the
house. This is consistent with our observation that the
leaves and branches on the tree located to the right side of
the house cause significant temporal changes in the RSS
measured on links likely to propagate through the branches
and leaves. Note that links with high u1l values all have at
least one end point near the tree. In particular, links which
are likely to see significant diffraction around the bottom-
right corner of the house have high u1l values. The leaves
and branches almost touch this corner, as seen in Fig. 2b.
Not only do these links measure high RSS variance during
the calibration period, they do so simultaneously. That is,
the fact that these links have high positive u1l values indi-
cates that when one of these links experiences increased
RSS variance, the other links also measure increased RSS
variance. Thus, the first eigen-network u1 becomes a spatial
signature for intrinsic motion-induced RSS variance. When
we see this linear combination in yr, we should attribute it

to intrinsic, rather than extrinsic motion. These observations
about the source of RSS variance on links support the idea
that intrinsic motion in the environment causes increased
RSS variance simultaneously on multiple links.

4.2 Localization Results

In this section, we compare the performance of VRTI,
SubVRT and LSVRT.

First, we compare in detail how LSVRT and VRTI per-
form in a particular segment of Experiment 2. The VRTI
estimates of Experiment 2 are shown in Fig. 8. For clarity,
we only show the actual/estimated positions when the
person walks one round (out of the four rounds) of the
square. We show the last round because it is particularly
affected by wind and thus illustrates the effects of intrinsic
noise on VRTI. In Fig. 8, some VRTI estimates are greatly
biased to the right side of the experimental area (i.e., five
estimates > 4:0 m error). However, for LSVRT, the impact
of intrinsic motion is greatly reduced. As shown in Fig. 9,
the estimates from LSVRT are more accurate than VRTI.
There are no estimate errors larger than 2.0 m.

Note that some estimates are outside the house. The algo-
rithms presented do not include any prior information of
the house map or physical barriers which would prevent
certain trajectories. Incorporation of such prior knowledge

Fig. 7. First eigen-network: Links with u1l > 30 percent ofmaxl u1l.

Fig. 6. Scree plot.

Fig. 8. Estimates from VRTI using measurements recorded when a per-
son walks the last round of the square path in Experiment 2.

Fig. 9. Estimates from LSVRT using the same measurements as used in
Fig. 8.
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might be used to obtain better estimates, but at the expense
of requiring more information to deploy the system.

Quantitatively, we next compare the localization errors
from VRTI, SubVRT and LSVRT for the full data sets. The
comparison between VRTI and SubVRT is shown in Fig. 9
of [12], and the comparison between VRTI and LSVRT is
shown in Fig. 10. The localization errors from SubVRT are
all below 1.8 m. For VRTI, there are several estimates with
errors above 3.0 m. These large errors are due to the impact
of intrinsic motion on static link measurements. Specifically,
we compare the localization errors during a period with
strong wind, from sample index 205 to 221, as shown in the
inset of Fig. 9 of [12]. During this period, the average locali-
zation error from VRTI is 3.0 m, while the average error
from SubVRT is 0.62 m, a 79 percent improvement, and for
LSVRT, it is only 0.50 m, a 83 percent improvement.

We also compare the RMSE of the estimates, which is
defined as the square root of the average squared localiza-
tion error over the course of the entire experiment. The
RMSEs from all of the experiments are summarized in
Table 1. For Experiment 1, the RMSE from VRTI is 0.70 m,
while the RMSE from SubVRT is 0.65 m, a 7.0 percent
improvement and the RMSE from LSVRT is 0.63 m, a
9.6 percent improvement. For Experiment 2, the RMSE from
VRTI is 1.26 m, while SubVRT and LSVRT are more robust
to impact of intrinsic motion. The RMSE from SubVRT is
0.74 m, a 41.3 percent improvement, and the RMSE from
LSVRT is 0.69 m, a 45.3 percent improvement.

For the third experiment, the RMSEs are generally higher
for all methods. We know that the small-scale position of
sensors in the network can significantly affect overall locali-
zation performance [31]. We suspect that this deployment
had more links in deep fades.

The results from Experiment 3 show two things
consistently:

1) LSVRT consistently has superior performance com-
pared to SubVRT. The improvement in RMSEs for
LSVRT are 14 to 19 percent better than SubVRT for
each of 3a, 3b, and 3c, as seen in Table 1.

2) Compared to data set 3a in which no fans were on,
the improvement in RMSE increases as the quantity
of intrinsic motion increases (as more fans are turned
on) in 3b and then in 3c. The improvement increases
in 3b compared to 3a, and in 3c compared to 3b, as
seen in Table 1.

We believe that during the one-minute calibration for
Experiment 3a, there was very little wind present, even
though there was wind later while the person was moving
in the room. As a result, for Experiment 3a, SubVRT and
LSVRT show small reductions in RMSE compared to VRTI.

Finally, we compare the localization RMSEs from
SubVRT and LSVRT using online and offline calibration
methods in Table 2. We see that the RMSEs from both esti-
mators using online calibration are very similar to those
using offline calibration for all experiments. Remember that
in our online calibration method, we perform calibration
only after enough measurements are collected, as described
in Section 2.6. We find as long as the number of measure-
ments used in the calibration is above 100 (which corre-
sponds to about 30 seconds) the performance of both
estimators using online calibration is significantly better
than VRTI. Thus, we choose the threshold of the number of
calibration measurements to be 100 in our tests. We note
that a result is that new intrinsic noise conditions, for exam-
ple a new weather condition, would take at least the dura-
tion of the calibration (here, 30 s) before the system properly
reduced its intrinsic noise.

Also recall that we use an intensity threshold value in
online calibration. Here, we test the effect of this threshold
on the localization accuracy. We choose different threshold
values and show RMSEs from Experiments 1 and 2 in
Fig. 11. We see that as long as the threshold value is in the
range of 0.3 to 0.8, RMSE is not sensitive to its value. For val-
ues < 0:3, very little data will be available for estimation of
the covariance matrix. For thresholds > 0:8, many data
points from the period with a person present are included,
which can lead SubVRT and LSVRT to learn to ignore data
corresponding to actual people in the area, and lead to
increased RMSE. When the threshold is between 0.3 and
0.8, there is sufficient intrinsic noise and little extrinsic
noise, which allows the two methods to reduce the RMSE.
From Fig. 3, we see that all highest pixel intensity values

Fig. 10. Estimate errors from VRTI and LSVRT.

TABLE 1
Localization RMSEs (in meter) from VRTI, SubVRT, and LSVRT

Methods VRTI SubVRT LSVRT

Results RMSE RMSE Improve RMSE Improve

Exp. 1 0:70 0:65 7:0% 0:63 9:6%
Exp. 2 1:26 0:74 41:3% 0:69 45:3%
Exp. 3a 1:31 1:28 2:3% 1:10 16:0%
Exp. 3b 1:44 1:15 20:1% 0:88 38:9%
Exp. 3c 1:89 1:35 28:6% 1:0 47:1%

TABLE 2
Localization RMSEs (in meter) from SubVRT and LSVRT Using

Online and Offline Calibration

Methods SubVRT LSVRT

Results Online Offline Online Offline

Exp. 1 0:66 0:65 0:64 0:63
Exp. 2 0:77 0:74 0:70 0:69
Exp. 3a 1:31 1:28 1:07 1:10
Exp. 3b 1:03 1:15 0:77 0:88
Exp. 3c 1:32 1:35 0:99 1:0
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with people in the network are above 0.5, thus we simply
choose the threshold value to be 0.5 in our tests.

We note that adaptive thresholding for determining
when an area is empty has been developed for mean-based
RTI [28], but is not directly applicable to VRTI because peo-
ple disappear when they stop moving. Future work could
explore applying such adaptive methods in applications in
which image intensities are unpredictable.

In sum, our SubVRT and LSVRT estimators using online
calibration achieve approximately equivalent localization
accuracy compared to using offline calibration.

4.3 Discussion

The parameters that we use in VRTI, SubVRT and LSVRT
are listed in Table 3. We show the effect of the number of
nodes on these three algorithms. We also discuss the effects
of the number of principal components k and the image var-

iance parameter s2
x on the performances of SubVRT and

LSVRT, respectively.
To see the effect of node number on the localization per-

formance, we run VRTI, SubVRT and LSVRT algorithms
using RSS measurements from only a randomly chosen
subset N less than the 34 total nodes used in Experiment 1.
For example, when we use N ¼ 20 nodes, we randomly
choose 20 of the measured nodes, and then run our algo-
rithms using the RSS measurements collected between
pairs of these 20 nodes. For each N , we repeat the above
procedure 100 times, and each time calculate the RMSEs
of the position estimates. The average RMSEs and the
RMSE standard deviations of the three algorithms from
Experiment 1 are shown in Fig. 12, for N ¼ 20 to 34 (a

node density of 0.27 per m2 to 0.47 per m2). We find if we
only use 26 nodes (L ¼ 650) to cover this 9 m by 8 m area,
the average RMSEs from three algorithms are all above

2 m. Comparing results from N ¼ 26 vs. N ¼ 32, the RMSE
reduces by a factor of 3� 3:6 for the three methods. For all
methods, increasing N may lead to diminishing returns
beyond N ¼ 32. We also find that the performance of
LSVRT is consistently better than SubVRT and VRTI inde-
pendent of number of nodes.

An important parameter for SubVRT is the number of
principal components used to construct the intrinsic sub-
space. As discussed in Section 2.3, the first k components
are used to calculate the projection matrix for the intrinsic
subspace PI . If k ¼ 0, PI ¼ 0, then P1 ¼ P2, SubVRT is sim-
plified to VRTI. The RMSEs of SubVRT using a range of k
are shown in Fig. 13. Since the first eigen-network u1 cap-
tures the strongest intrinsic signal, when k ¼ 1, the RMSE of
Experiment 2 decreases substantially from 1.26 m to 0.82 m.
Since Experiment 1 has less intrinsic motion, the RMSE
decreases from 0.70 m when k ¼ 0 to 0.65 m when k ¼ 4, a
less substantial decrease. We note that as k increases, more
and more information in the measurement is removed, and
the RMSE stops decreasing dramatically, and even
increases, at certain k. This is because when k becomes very
large, the information removed also contains a great amount
of signal caused by extrinsic (human) motion. Thus, the per-
formance of SubVRT could be degraded if k is chosen to be
too large. The parameter k is a tradeoff between removing
intrinsic motion impact and keeping useful information
from extrinsic motion. For experiments without much
intrinsic motion, such as Experiment 1, we choose a small k.

Fig. 11. RMSEs vs. pixel intensity threshold values.

TABLE 3
Parameters in VRTI, SubVRT, LSVRT, and Kalman Filter

Param. Value Description

a 100 Regularization parameter
m 4 Window length to calculate variance
k 4=40 Principal components, Exp. 1 / Exp. 2, 3
s2
x

0:001 Image variance parameter

s2
w

2 Process noise parameter

s2
v

5 Measurement noise parameter

Fig. 12. Localization RMSEs from Experiment 1 vs. number of nodes.

Fig. 13. Localization RMSEs vs. principal component number k.
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However, for Experiment 2, with strong impact from intrin-
sic motion, we use a large k. As listed in Table 3, we use
k ¼ 4 and k ¼ 40 for all experiments.

An advantage of LSVRT over SubVRT is that LSVRT can
change its parameters automatically based on calibration
measurements, thus we do not need to manually tune
parameters like k in SubVRT. Thus, we only investigate

parameter s2
x in LSVRT, which plays the same role of

the regularization parameter a in SubVRT. From Fig. 14, we
see the RMSE from LSVRT reaches the minimum at 0.63 m,

when s2
x ¼ 0:001 and m ¼ 4. However, the localization

RMSEs from LSVRT are shallow functions of s2
x in the range

from 10�4 to 10�1. That is, LSVRT is not very sensitive to
this regularization parameter in a wide range. Another
advantage of LSVRT is that its localization accuracy is
higher than SubVRT for all five experiments, as listed in
Table 1. As discussed in Section 2.4, the inverse of the
covariance matrix Cx is used as the regularization term in
the LSVRT formulation. This regularization scheme pro-
vides better smoothing of the images, compared to the regu-
larization term (difference operations of the image) in VRTI
and SubVRT formulations. Thus, the motion images from
LSVRT are generally cleaner than those from VRTI and
SubVRT, and LSVRT has even better localization accuracy
than SubVRT.

5 TRACKING

In this section, we apply a Kalman filter to the localization
estimates shown in Section 4.2 to better estimate moving
people’s positions over time. Then, we compare the track-
ing results from VRTI with those from SubVRT and
LSVRT, and show that the Kalman filter tracking results
from SubVRT and LSVRT are more robust to large localiza-
tion errors.

5.1 Kalman Filter

In the state transition model of the Kalman filter, we include
both position ðPx; PyÞ and velocity ðVx; VyÞ in the Cartesian

coordinate system in the state vector s ¼ ½Px; Py; Vx; Vy�T ,
and the state transition model is

s½t� ¼ Gs½t� 1� þw½t�; (23)

wherew ¼ ½0; 0; wx; wy�T is the process noise, and G is

G ¼
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

2
664

3
775: (24)

The observation inputs r½t� of the Kalman filter are the local-
ization estimates from VRTI, SubVRT or LSVRT at time t,
and the observation model is

r½t� ¼ Hs½t� þ v½t�; (25)

where v ¼ ½vx; vy�T is the measurement noise, andH is

H ¼ 1 0 0 0
0 1 0 0

� 	
: (26)

In the Kalman filter, vx and vy are zero-mean Gaussian with

variance s2
v, wx and wy are zero-mean Gaussian with vari-

ance s2
w [32]. The parameters s2

v and s2
w of the measurement

noise and process noise are listed in Table 3.

5.2 Tracking Results

We use the Kalman filter described above to track the posi-
tions of the person. The tracking results of Experiment 2
from SubVRT and LSVRT are shown in Fig. 15. We see that
for Experiment 2, with significant intrinsic motion, the Kal-
man filter tracking results using SubVRT and LSVRT esti-
mates generally have errors less than 1 meter. The tracking

Fig. 14. Localization RMSEs vs. s2
x.

Fig. 15. Kalman filter tracking results of Experiment 2 from SubVRT (a)
and LSVRT (b).
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results from LSVRT, proposed in this paper, are even better
than those from SubVRT. The cumulative distribution func-
tions (CDFs) of the tracking errors from Experiment 2 are
shown in Fig. 16. We see that the Kalman filter tracking
results from VRTI have many more large errors than
SubVRT and LSVRT. For VRTI, 97 percent of the tracking
errors are less than 3.91 m, while 97 percent of the tracking
errors from SubVRT are less than 1.36 m, a 65:2 percent
improvement. For LSVRT, 97 percent of the errors are less
than 1.15 m, a 70:6 percent improvement compared to
VRTI. We use the 97th percentile of errors to show the
robustness of the tracking algorithm to large errors, and the
CDFs show the tracking results from SubVRT and LSVRT
are more robust to these large errors.

We also compare the RMSEs of the tracking results from
VRTI, SubVRT and LSVRT, which are listed in Table 4. For
Experiment 1, the tracking RMSEs from SubVRT and
LSVRT are both 0.57 m, a 13:6 percent improvement com-
pared to the RMSE of 0.66 m from VRTI. For Experiment 2,
the tracking RMSE from SubVRT is reduced by
40:5 percent to 0.72 m compared to 1.21 m RMSE from
VRTI, and the RMSE from LSVRT is reduced by 45:5 per-
cent to 0.66 m. We note that the tracking RMSEs from
VRTI, SubVRT and LSVRT of Experiment 2 are both larger
than Experiment 1 due to the impact of intrinsic motion.
However, for VRTI the tracking RMSE from Experiment 2
has a 83:3 percent increase compared to Experiment 1,
while for SubVRT and LSVRT, they only increase 26:3 and
15:8 percent, respectively. For the data sets recorded dur-
ing Experiment 3, the tracking errors from LSVRT are all
below 1 meter. Overall, the tracking RMSEs from SubVRT
and LSVRT are more robust to intrinsic motion than VRTI,
with LSVRT performing better than SubVRT. Also, the
performance gain vs. VRTI increases as the quantity of
intrinsic motion increases.

6 RELATED WORK

For device-free localization of people in wireless sensor
networks, different measurements, algorithms and frame-
works have been proposed [6], [8], [9], [33], [34]. For
RSS-based localization, we may divide methods into
fingerprint-based andmodel-based algorithms. Like fingerprint-
based real-time location service (RTLS) systems, fingerprint-
based device-free localization methods use a database of

training measurements, and estimate a person’s location
by comparing a measurement taken during the online
phase with the training measurement database [35], [36],
[37], [38]. To collect one training measurement, a person
stands in one position while link measurements are made,
and associates the collected data with her known coordi-
nate. Several such measurements are made throughout the
area of interest. One active area of research is developing
tracking methods for multiple people which do not require
an exponential increase in the number of training measure-
ments that must be made [36]. Another area is the use of
channel state information (instead of RSS) for fingerprint-
based DFL [37], [38]. Finally, significant research addresses
fingerprint-based activity recognition rather than localiza-
tion alone [39], [40]. Since fingerprint-based methods
require a person to perform training at many known loca-
tions inside the area of interest, it is not suitable in emer-
gency scenarios in which presence in the area of interest is
dangerous.

Model-based algorithms [8], [18], [23], [26], [41], [42],
[43], [44], [45] require a model for the relationship between
changes in RSS as a function of people’s positions. With this
forward model, these methods solve localization as an
inverse problem. Model-based algorithms typically require
1) calibration measurements taken when the area is empty
of people, and 2) known node coordinates. However, VRTI
does not require calibration, and methods have been devel-
oped to learn the “empty” condition of each link [25], [45].
Regarding 2), node self-localization methods such as GPS
may provide sufficient node localization for RTI [46]; addi-
tionally, a model-based algorithm may simultaneously per-
form device-free localization and improve the node location
estimates [18].

Radio tomographic imaging (RTI) is a particular type of
model-based algorithm which describes a statistic of the
measured RSS as a linear combination of the effect caused
by each pixel in an area. Mean-based RTI relates link attenu-
ation to the loss due to people or objects in the environment
[23], [43], but does not perform well in non-LOS multipath-
rich environments. Further, static building structure (walls
and open areas) can be mapped [47]. Variance-based RTI
(VRTI) [8] relates link attenuation to motion in the environ-
ment, and does not require any calibration. As such, it is
well-suited for emergency applications. However, VRTI
cannot locate people if they stand still without any motion,
and it is sensitive to other motion in the environment, as
shown in this paper.

Bistatic radar can be used to detect and locate motion
from behind walls using bistatic WiFi signals inside of the
building [48]. Monostatic or multi-antenna through-wall

Fig. 16. CDFs of tracking errors.

TABLE 4
Tracking RMSEs (in Meter) from VRTI, SubVRT, and LSVRT

Methods VRTI SubVRT LSVRT

Results RMSE RMSE Improve RMSE Improve

Exp. 1 0:66 0:57 13:6% 0:57 13:6%
Exp. 2 1:21 0:72 40:5% 0:66 45:5%
Exp. 3a 1:17 1:15 1:7% 0:98 16:2%
Exp. 3b 1:31 0:98 25:2% 0:79 39:7%
Exp. 3c 1:86 1:33 28:5% 0:99 46:8%
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radar systems [49], [50] operate with one or very few devi-
ces, but use specialized receivers and require GHz of
bandwidth.

In this paper, we apply subspace decomposition and
least squares-based formulations to reduce the impact of
intrinsic noise in VRTI. We note that noise reduction would
presumably benefit both fingerprint-based and model-
based algorithms, and future work may apply these techni-
ques to other device-free localization methods.

7 CONCLUSION

In this paper, we propose to use subspace decomposition
and least squares methods to reduce noise for variance-
based device-free localization and tracking. We discuss how
intrinsic motion, such as leaves moving in the wind,
increase measured RSS variance in a way that is “noise” to a
localization system. Our new estimator LSVRT outperforms
SubVRT in localization accuracy, and it requires tuning of
fewer parameters compared to SubVRT. We also propose a
new online calibration method so that both SubVRT and
LSVRT can use real-time online measurements to perform
calibration instead of using “empty-area” offline calibration
measurements. We perform new experiments to better
investigate the effect of intrinsic motion and the perfor-
mance of SubVRT and LSVRT. Experimental results show
that SubVRT and LSVRT can reduce localization RMSE by
more than 40 percent, and our online calibration method
achieves similar localization accuracy as offline calibration.
We further apply a Kalman filter on SubVRT and LSVRT
estimates for tracking and show that SubVRT and LSVRT
are more robust to large errors than VRTI.
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