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Abstract—Due to limited resources on edge and different characteristics of deep neural network (DNN) models, it is a big challenge to
optimize DNN inference performance in terms of energy consumption and end-to-end latency. In addition to dynamic voltage frequency
scaling (DVFS) technique, edge-cloud architecture provides a collaborative approach for efficient DNN inference. However, current
edge-cloud collaborative inference methods have not optimized various compute resources on edge devices. Thus, we propose DVFO,
a novel DVFS-enabled edge-cloud collaborative inference framework, which co-optimizes DVFS and offloading parameters via deep
reinforcement learning (DRL). Specifically, DVFO automatically co-optimizes 1) the CPU, GPU and memory frequencies of edge
devices, and 2) the offloaded feature map. In addition, it leverages a thinking-while-moving concurrent mechanism to accelerate the
DRL learning process, and a spatial-channel attention mechanism to identify the less important DNN feature map for efficient
offloading. This approach improves inference performance for different DNN models under various edge-cloud network conditions.
Extensive evaluations using two datasets and six widely-deployed DNN models on five heterogeneous edge devices show that DVFO
significantly reduces the energy consumption by 33% on average, compared to state-of-the-art schemes. Moreover, DVFO achieves up
to 28.6%~59.1% end-to-end latency reduction, while maintaining accuracy within 1% loss on average.

Index Terms—Edge Computing, DVFS technology, Collaborative Inference, Deep Reinforcement Learning.

1 INTRODUCTION

S the development of edge computing [1] and

lightweight deep learning techniques, edge devices
equipped with internet of things (IoT) connectivity and
hardware accelerators (e.g.,, GPUs) are becoming capable
of executing deep neural network (DNN) in real-time for
many edge intelligence [2] applications, such as defect de-
tection [3], face recognition [4], and mobile augmented real-
ity [5], just to name a few. For instance, autonomous driv-
ing [6] requires running latency-critical DNN inference tasks
to achieve both high real-time performance and satisfactory
quality of service (QoS) [7]. However, compared to cloud
servers, edge devices have fewer compute resources and
more stringent power consumption requirements, thus it is
more challenging to optimize DNN inference performance
in terms of energy consumption and end-to-end latency on
local edge devices.
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Fig. 1. Energy usage of CPU, GPU and memory for four DNN inference
models with CIFAR-100 [8] dataset, measured on NVIDIA Xavier NX.
We set the batch size to 1.

To achieve efficient DNN inference on resource-
constrained edge devices, it is a promising approach to
reduces the end-to-end latency or energy consumption of
edge devices via various techniques such as dynamic volt-
age frequency scaling (DVFS) [9], [10], and edge-cloud
collaborative inference [11], [12]. DVFS is a low-power
technology that dynamically adjusts the voltage and fre-
quency according to energy consumption. Prior work [13]
has proposed a series of deep reinforcement learning-based
DVES techniques to reduce energy consumption. However,
DVES reduces energy consumption by increasing end-to-
end latency, which we illustrate and discuss in Section 2.
In addition, none of the existing methods above consid-
ers the edge-cloud collaboration paradigm. The edge-cloud
collaborative inference offloads partial DNN feature map
from edge devices to cloud servers, with edge devices
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inferring partial DNN, cloud servers executing the rest,
and small neural networks to fuse them to obtain the
final inference results [14]. To avoid network bottlenecks to
achieve offloading DNN feature map efficiently, prior work
utilizes explainable AI [12] and compressed sensing [14]
to compress feature map. However, the expensive runtime
overhead of these schemes still impairs DNN inference real-
time performance.

Combining DVFS and edge-cloud collaboration, prior
work [15] proposes a data offloading scheme, namely
DRLDO, which uses deep reinforcement learning together
with DVES to reduce energy consumption. However,
DRLDO only considers CPU core voltage and frequency in
DVFS, without including the GPU and memory resources.
In addition, it does not consider performance bottlenecks
of various DNN models. Recent benchmarks reveal that
GPUs are responsible for around 70% of the total energy
consumption during DNN training [16]. As shown in Fig.1,
we perform experiments and show that during DNN infer-
ence phase, GPUs also consume more energy than CPUs for
all the DNN models that we have investigated. We report
the normalized energy usage of different compute units in-
cluding CPU, GPU, and memory, when executing four DNN
models with CIFAR-100 [8] dataset on an NVIDIA Xavier
NX edge device. The result shows that the energy consump-
tion of the GPU is 3.1x to 3.5x that of the CPU, indicating
that GPU dominates DNN inference. It can also be observed
that since DNN inference accesses memory frequently, the
energy consumption of the memory is not negligible. In
addition, as shown in Fig. 2, the performance of different
DNN models has diminishing returns as hardware frequen-
cies increase. Learning DNN model behaviors on different
edge devices can further improve inference performance
and energy efficiency. All these observations motivate us
to incorporate CPU, GPU and memory resources in DVEFS,
and utilize feature map offloading for DNN inference on
edge devices.

Table 1 provides a comparison of key features of DVFO
with four dimensions of DVFO to related work, includ-
ing DVFS technology and edge-cloud collaborative in-
ference. DVEFS technology enables on-device DNN infer-
ence with lower energy consumption. While DRLDO [15],
CARTAD [17] and QL-HDS [18] have achieved energy-
efficient inference on multi-core CPU systems using DVFS
technology, they did not consider edge devices with
CPU-GPU heterogeneous processors, which are crucial for
GPU-dominated energy-efficient on-device inference. Deep-
COD [14] and AgileNN [12] compressed the offloaded DNN
feature map, but the compression overhead is not negligible.
Since most of the works mentioned above do not combine
DVFS with edge-cloud collaborative inference, in this pa-
per we showcase how to achieve low latency and energy
consumption using learning-based DVFS in an edge-cloud
collaboration framework.

In order to achieve energy-efficient DNN inference, in
this paper, we propose DVFO, a DVFES enabled learning-
based collaborative inference framework that automatically
co-optimizes the CPU, GPU and memory frequencies of
edge devices, as well as the DNN feature map to be of-
floaded to cloud servers. We need to deal with the fol-
lowing issues to design and implement such a framework.

2
TABLE 1
Comparison of key features of DVFO with prior work
Service Enable  Collaborative Data Enable

Framework DVEFS Inference Compression ~ GPU device

DRLDO [15] v v X X
CARTAD [17] v X X X
QL-HDS [18] v X X X
AppealNet [19] X v X v
DeepCOD [14] X v v v
AgileNN [12] X v v v
GearDVFS [20] v X X v
DVFO (Ours) v v v v

Firstly, edge-cloud collaborative inference has dynamic net-
work conditions and intense real-time requirements. Deep
reinforcement learning (DRL) is effective in dealing with
high-dimensional decision and optimization problems, but
existing methods applied to edge-cloud collaboration are
inefficient to deal with the real-world dynamic environ-
ment, e.g., online policy inference cannot catch dynamic
environment changes [21]. Thus, we utilize a concurrency
mechanism, called thinking-while-moving [22], to accelerate
policy inference for agents in DRL, as we discuss in details
in Section 5.1. Secondly, the feature map to be offloaded
to cloud servers would have a network bottleneck, which
can dramatically increase transmission latency and energy
consumption. We leverage a spatial-channel attention mech-
anism [23] to guide feature map offloading [12], so that
the end-to-end latency can be significantly reduced without
sacrificing DNN inference accuracy.

After solving these issues, we perform experiments and
compare DVFO with state-of-the-art methods on CIFAR-
100 [8] and ImageNet-2012 [24] datasets. Extensive eval-
uations show that DVFO can efficiently balance energy
consumption and end-to-end latency by automatically co-
optimizing the hardware resources of edge devices and the
feature map to be offloaded to cloud servers.

In summary, we make the following contributions:

e We propose DVFO, a novel DVFS enabled edge-
cloud collaborative DNN inference framework that
automatically co-optimizes the hardware frequencies
of edge devices, and the proportion of the feature
map to be offloaded to cloud servers.

o We apply the thinking-while-moving concurrent con-
trol mechanism in learning-based optimization, and
we design an importance-based feature map offload-
ing scheme to alleviate edge-cloud network bottle-
necks by leveraging a spatial-channel attention mecha-
nism.

o Extensive evaluations on five heterogeneous edge
devices with two datasets show that DVFO reduces
energy consumption by up to 33% on average for
various DNN models, compared to state-of-the-art
schemes. DVFO also achieves 28.6%~59.1% end-to-
end latency reduction, without scarifying accuracy.

The rest of the paper is organized as follows: Section 2
highlights our research motivations. Section 3 briefly de-
scribes deep reinforcement learning we used. Section 4 de-
scribes system overview and problem formulation. Section 5
illustrates our framework design in detail. Section 6 reports
experimental results. Section 7 presents related work. Sec-
tion 8 concludes our work.
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Fig. 2. The inference performance (i.e., latency per mJ) of five heteroge-
neous edge devices with different CPU, GPU and memory frequencies
for EfficientNet-BO [25] and Visual Transformer (ViT-B16) [26] DNN
models under CIFAR-100 [8] dataset. We set the batch size to 1.

2 MOTIVATION

Although DNN models can provide state-of-the-art perfor-
mance for many IoT applications, it comes at the cost of
intensive complexity and prohibitive energy consumption.
Therefore, it is critical to be able to efficiently execute DNN
on resource-constrained edge devices. In this section, we
discuss the experiments and observations that motivate us
to develop an efficient DVFS enabled learning-based edge-
cloud collaborative inference framework.

As mentioned in Section 1, we perform experiments
with two widely-deployed DNN models (i.e., EfficientNet-
B0 [25] and ViT-B16 [26]), and observe that GPU consumes
more energy than CPU during the DNN inference phase
on edge devices. To better understand the impact of CPU,
GPU and memory frequencies of edge devices on the end-
to-end latency and energy consumption, we further con-
duct the following experiments and analysis in Fig. 2. As
you can see, we execute memory-intensive DNN model
(e.g., EfficientNet-B0 [25]) and compute-intensive (e.g., Vil-
B16 [26]) DNN model [27] on an NVIDIA Jetson Nano and
NVIDIA Xavier NX edge platform, respectively.

Note that prior work only considers end-to-end latency
or energy consumption as a single metric, which cannot
directly reveal the trade-off between inference performance
and energy requirements. We report the inference perfor-
mance latency per mJ, a metric by dividing end-to-end
latency by energy consumption. As shown in Fig. 2, we
measure the inference performance of two heterogeneous
edge devices with two aforementioned DNN models under
CIFAR-100 [8] dataset using different CPU, GPU and mem-
ory frequencies. We have the following key observations
from our experiments and analysis:

e High frequency does not mean high inference
performance. Intuitively, the higher frequency is,
the larger amounts of energy the system consumes.
However, increasing frequency does not improve

3

inference performance (i.e., latency per m]). Take
EfficientNet-BO [25] as an example, the energy con-
sumption with the maximum frequency doubled af-
ter 500MHz, but the end-to-end latency is not signif-
icantly reduced, which means that the inference per-
formance tends to saturate. Similar phenomenon can
be observed for Vision Transformer (ViT-B16) [26].
Therefore, a learning approach is needed to automat-
ically find the appropriate hardware frequencies to
achieve optimal inference performance.

e« DNN models with different operation intensities
reveal significant end-to-end latency and energy
differences on heterogeneous edge devices. Take
for example the NVIDIA Xavier NX edge platform,
which has abundant compute resources. According
to operational density in the roofline model [27], we
can conclude from the Fig. 2(b) that EfficientNet-
B0 [25] is a memory-intensive DNN, because the
performance bottleneck depends on the CPU and
memory frequencies. The ViT-B16 [26] with higher
complexity in Fig. 2(d) is a compute-intensive DNN
model, where GPU frequency dominates perfor-
mance. However, these two DNN models are both
compute-intensive on Jetson Nano, which has lim-
ited compute resources compared with Xavier NX.
Thus, it illustrates that the same DNN model exhibit
high heterogeneity for edge devices with different
computing resources, and DVFS alone cannot further
improve inference performance. Therefore, we high-
light that identifying the behavior of various DNN
models under heterogeneous devices can further im-
prove inference performance.

In addition to the observations mentioned above, we also
point out the need to adjust feature map offloading adap-
tively based on edge-cloud network conditions for various
IoT and mobile computing applications. Take autonomous
driving for example. More data can be offloaded to cloud,
when driving in urban areas with high quality wireless
network connection, while offloading needs to be reduced
for rural areas with limited network bandwidth. Thus, it
motivates us to learn the feature map offloading proportion
parameter for various network conditions. As shown in
Section 6.4, our DVFO framework can take advantage of
the abundant resources on cloud servers to offload more
feature map for high network bandwidth conditions, while
our algorithm learns to use different offload proportion
parameters for poor network conditions.

To summarize, we highlight two schemes that can
achieve optimal trade-off between energy consumption and
end-to-end latency for energy-efficient DNN inference: (1)
dynamic voltage and frequency scaling (DVFS), and (2)
edge-cloud collaborative inference. Note that the above two
schemes are orthogonal. For instance, DVFS can reduce
energy consumption by adjusting hardware frequency, but it
increases end-to-end latency. Edge-cloud collaborative infer-
ence can effectively reduce end-to-end latency by offloading
data while further reducing energy consumption on edge
devices.
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3 PRELIMINARIES

Deep reinforcement learning (DRL) combines deep learning
and reinforcement learning, where reinforcement learning
is used to define problems and optimize objectives, and
deep learning is used to solve the modeling of policy
and value function (V-function) in reinforcement learning.
In general, DRL uses the back-propagation algorithm to
optimize the objective function, which is suitable for solv-
ing complex high-dimensional sequential decision problems
and achieves impressive performance on many tasks. The
agent in DRL is used to perceive the environment and make
decisions, which performs a task by interacting with the
external environment. Meanwhile, the environment changes
its state by responding to the actions selected by the agent,
and feeds back corresponding reward signals to the agent.

As shown in Fig. 3, most DRL algorithms take the
optimization problem as a markov decision process (MDP),
which can be described by a tuple: (S, A, w,r,p), where S
is the state space containing all states s(s € S); A is the
action space containing all actions a(a € A); 7 is the prob-
ability distribution function that determines the next action
a according to the state s, satisfying > . 4 7(als) = 1; 7 is
a scalar function, which means that after the agent makes
an action a according to the current state s, the environment
feeds back a reward signal to the agent. Note that r is related
to the state s’ at the next moment due to hysteresis; p is
the state transition probability, which means that after the
agent makes an action a according to the current state s, the
probability that the environment changes to the state s’ at
the next moment, also satisfying s p(s'[s,a) = 1.

l Reward r |

Take action a | gpyironment

Qstate
/] s
probability — &
p(s’ls, a)

parameter 6

Observe state s

Fig. 3. Overview of deep reinforcement learning system.

The goal of the DRL algorithm is to find an optimal
policy 7* to maximize the following expected return:

T-1
7" = argmaxy . p(r) {Z ’ytlrt] ) 1)
t=0

where 7 = so,a0,70,51,01,71," "+ ,$T7-1,aT-1,TT—-1 1S a
trajectory that represents an interaction process between the
agent and the environment. § is the parameter of policy
network, and v € [0,1] is a discount factor. We can obtain
the optimal policy 7* = argmax, Q*(s, a) by value iteration
via the following the Bellman optimal equation of state-
action value function (Q-function):

Q*(S7 a) = IE’rwp(‘r) [T(Stv at) + YMaXa, Q*(St+1a at+1)]

2

In Section 5.1, we describe the DQN-based DRL algo-
rithm in detail.

4

4 SYSTEM OVERVIEW AND PROBLEM STATEMENT
4.1 System Overview

Fig. 4 shows an overview of our DVFO framework. The
framework incorporates local DNN inference on edge de-
vices and remote DNN inference on cloud servers. During
DNN inference, users submit DNN inference tasks to DVFO,
along with user-defined parameters to adjust the trade-off
between energy consumption and end-to-end latency (i.e.,
the weight parameter 7 in Eq. (4)), and the workflow starts
as follows. ® DVFO utilizes a feature extractor on edge
devices to extract high-dimensional features of the input
data and obtain DNN feature map. The feature extractor
is implemented based on a lightweight neural network with
negligible overhead. @ To alleviate network bottlenecks of
the feature map to be offloaded to cloud servers, DVFO
utilizes spatial-channel attention module to evaluate the im-
portance of feature map, in order to guide the feature map
offloading. The attention module details are in Section 5.2.
® The DRL-based DVFO module (i.e., DVFO optimizer)
learns the optimal hardware frequency vector and the pro-
portion parameter of the feature map to be offloaded to
cloud servers for each task based on historical data, current
bandwidth, and user configuration (see Section 5.1 for more
details). @ Based on the optimal hardware frequencies and
the feature map to be offloaded to cloud servers learned by
DVFO optimizer, DVFO retains the top-k features with high
importance for local DNN inference, and then combines
the remote DNN with other compressed less important
features via weighted summation (the summation weight
parameter A € (0,1) can also be user-defined), to produce
the final prediction result on edge devices locally. Compared
to adding additional neural network (NN) layers for fusion,
such a point-to-point weighted summation method is much
more lightweight and has low computation overhead on
edge [12].

4.2 Problem Statement

Opportunities to reduce the energy consumption of DNN
inference come at the cost of increased end-to-end latency.
When optimized for energy consumption, DNN end-to-end
latency (i.e., time-to-inference, or TTI) may be impaired.
Here we define the energy consumption of DNN inference
as its energy-to-inference (ETI):

ETI(f, ¢) = TTI(f, €) x AvgPower(f, ¢), 3)

where f and ¢ are the hardware frequency vector of device,
and the proportion of the feature map to be offloaded to
cloud servers, respectively, and AvgPower is the average
power consumption during inference with configuration
(f, &). Different from prior work [15] that only considers the
CPU frequency f¢, we also incorporate GPU and memory
frequencies of edge devices, denoted as fG, fM , respec-
tively, that is, f = (f©, f¢, fM).

Cost metric: It is important to define a cost metric in
designing DVFO, so that users can adjust the trade-off
between energy consumption and end-to-end latency based
on the application requirements and their preferences. Thus
we propose the following cost metric:

C(f,&n) =n-ETI(f, &) + (1 — n) - MaxPower - TTI(f, £),
(4)
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Fig. 4. Overview of the architecture of DVFO framework.

where MaxPower is the maximum power limit supported
by device, a constant introduced to unify the units of mea-
sure in the cost metric [28], and n € [0,1] is a weight
parameter that users define to adjust the balance between
energy consumption and end-to-end latency. In particular,
when n = 0, we are only optimizing energy consumption
ETI, whereas when n = 1, only end-to-end latency TTI
is optimized. A more detailed sensitivity analysis of the
parameter 1 can be found in Section 6.

End-to-end latency model: For a set of DNN inference
tasks X = (z1,%2,...,2n) consisting of N independent
and non-preemptive tasks x;, ¢ = 1,--- , N. We show the
optimization problem in terms of end-to-end latency and
energy consumption. First, for end-to-end latency TTI/*",
it incorporates 1) the computing time on edge for the i-
th task TTI\**™, 2) the compression (quantization) time of
the feature map to be offloaded to cloud servers on edge
TTI;”™?, 3) the transmission time of the offloaded feature
map to cloud TTIOf 7, and 4) the computing time on cloud
TTI{ !, Note that we ignore the fusion time on edge
devices and the decompression time on cloud servers, ben-
efit from the lightweight weighted summation-based fusion
method on edge devices in Section 5.3 and the abundant
computing resources of the cloud servers, respectively.

To be more specific, the computing time on edge TTT.***
depends on two factors: the size of feature map without of-

ﬂoadmg mloc‘” and the hardware frequency of edge devices
(flocal, flocal, flocal), which can be defined as:
local
TTIlocal m; (5)

(flocal7 flocal7 flocal)

Unlike the conventional tasks oriented in prior
work [29], DVFO focuses on inference tasks based on DNN
models, that is, the DNN inference performance depends
not only on the CPU frequency (for data preprocessing),
but is also affected by the GPU frequency (for parallel
computation) as well as the memory frequency (for data
copying between the CPU and GPU).

Likewise, the computing time on cloud TTIS*¢ de-
pends on the size of the feature map to be offloaded to cloud

servers m$°%?, and the hardware frequency of cloud servers
( fC’ e M )
cloud> J cloud> J cloud
loud
mC
TTIcloud , (6)

(fcloud’ cloud’ cloud)

The compression time on edge TTI;"""” depends on the
size of the feature map to be offloaded to cloud servers
mglovd, In this work, we use quantization aware training
(QAT) in Section 6.1 to effectively compress the offloaded

Controller 1

feature map with low-bit quantization (i.e., converted from
float-32 model to int-8 model). The compression time on
edge TTI;°"” defined as:

TTIcomp QAT( cloud) , (7)

IOff

The transmission time T'T is affected by the size of

the feature map to be offloaded to cloud servers mglovd and
the communication bandwidth B, that is:
cloud
Tl = )

Note that the size of the feature map to be offloaded
to cloud servers mgl°“d is determined by the proportion
parameter £ in Eq. (4).

Therefore, the end-to-end latency TTT:***! can be formu-
lated as follows:

TTL = TTI + T + TTIY + TTIE" (9)

Energy consumption model: For energy consumption,
the overall energy consumption ETIEOt“l of edge devices for
a particular task z; consists of the energy consumption for
computing ETI{ and the energy consumption for offloading

ETI?, that is:

ETI" = ETI + ETI? (10)

To be more specific, the energy consumption for com-
puting ETI; of i-th task x; depends on the edge computing
time TTI:°** and the power consumption of edge devices

P;, which can be defined as:
ETI{ = TTI.** . P, (11)
where the power consumption P; of the edge device is the
summation of dynamic PP , static PZS , and constant PC
power consumption [30]. PP originates from the activity
of the logic gates inside the processor, which can be derived
by PP = CV?(fC, f¢, fM). Where C is the capacitance
of the switching logic gate. P originates from transistor
static current when the processor is powered on, which is
described by PiS = V Ny Is. Nyr is the number of logic
gates, and I is the normalized static current of each logic
gate. PC is the power consumption of peripheral devices,
such as board fans and peripheral circuitry.
The energy consumption of offloading ETI] for z; is
affected by the communication bandwidth B of the network

between edge devices and cloud servers, the proportion of

the feature map to be offloaded to cloud servers m§°%?, and
the power consumption of edge devices P;, that is:
cloud 3
ETI = "”T'R (12)
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The objective of of DVFO is to minimize the cost in
Eq. (4) by automatically exploring the feasible set of edge
hardware frequency vector (f¢, f&, fM) and the offload-
ing proportion parameter &. f,,;, and f,,,, ensures that
hardware frequency vector (f, f¢, fM) is not beyond its
feasible change range [f,,in, fmin] specified in the hardware
manual. Put formally in terms of the cost function defined
by Eq. (4), our objective becomes:

(P):min.C(f, &)

s.t. fmzn < (fcafGan) § fmam
0<¢<1

(13)

For each task, DVFO can automatically co-optimize
CPU, GPU and memory frequencies, as well as the propor-
tion of the feature map to be offloaded to cloud servers.
Note that we assume cloud servers have enough compute
resources to guarantee the real-time performance of remote
inference. We also assume that edge devices can be put into
idle mode after the inference and offloading operations to
save energy.

Complexity Analysis: To represent the search space
in DVFO, let C be the number of available CPU clock
frequencies, G be the number of available GPU clock fre-
quencies, and M be the number of available memory clock
frequencies. Therefore, there are total C' x G x M possible
options to pick the processor clock frequencies. Since the
objective of DVFO is to co-optimize the clock frequencies of
the processors as well as the proportion of feature map to
be offloaded, the complexity of search space is O(CGMYE).

It is non-trivial to search exhaustively or greedily for the
optimal joint configuration in polynomial time. To address
this problem, we leverage a learning-based approach to
effectively reduce the search space by concurrency control.
Deep reinforcement learning (DRL), as a semi-supervised
method, which does not require manually labeling data, is
suitable for decision-making problems in complex environ-
ment, especially for large-scale state spaces and dynamically
changing environment, where traditional supervised and
unsupervised learning methods are usually powerless. The
agent in DRL can learn the optimal policies by interacting
with the environment, and does not need a prior knowl-
edge. On this basis, DRL is capable of autonomous learning
and incremental optimization in complex environment to
address more complex and realistic problems. In addition,
DRL is adaptive, able to adjust its policies and actions in
real time, in response to changes in the environment and
feedback rewards. These properties make it well suited to
the dynamic environment of our problem.

Table 2 provides the notation and corresponding descrip-
tions used in this paper.

5 SYSTEM DESIGN
5.1 Learning-based DVFO

In this section, we describe how DVFO determines the
hardware frequency vector f and the proportion of feature
map to be offloaded { for each task. Inspired by recent
learning-based DVFS methods [20], [31], the problem P in
Eq. (13), can be converted to a reinforcement learning (RL)
problem [32] to solve. We first formulate the optimization

6
TABLE 2
Notation and Description
Notation | Description
X the whole task set
z; the i-th non-preemptive task
TTI the time-to-inference
ETI the energy-to-inference
c the cost metric
re the CPU frequencies of edge devices
e the GPU frequencies of edge devices
™ the memory frequencies of edge devices
I3 the proportion of the feature map to be offloaded
n the weight parameter
mlocal the size of feature map without offloading
mgloud the size of feature map with offloading
B the communication bandwidth
o the TOPS metric of edge devices
pP; the power consumption of edge devices
A the summation weight local and remote inference results

problem as a markov decision process (MDP), and utilize
deep reinforcement learning (DRL) to automatically deter-
mine the optimal configuration.

To be more specific, the agent in DRL has three compo-
nents, namely state, action and reward, which are defined
as follows:

e State Space: At each time step ¢, the agent in DRL
will construct a state space S. We define the weight
parameter 7 specified by the user, the summation
weight parameter ), the importance distribution of
features x ~ p(a), and the current network band-
width B as state. The above measures constitute the
state space S, denoted as S = {\, 7, x ~ p(a), B}.

e Action Space: We set the frequency vector f; and
the offloading proportion parameter {; for z; as
actions. Therefore, the action space can be expressed
as A = {f;,&}, where £, = (fC, ¢, fM) repre-
sents the CPU, GPU and memory frequencies for a
particular task z;. For example (1500, 900, 1200, 0.3)
means that 30% of feature map are executed locally,
and the remaining of the feature map are offloaded
to the remote, when the CPU, GPU and memory fre-
quencies are set to 1500MHz, 900MHz and 1200MHz,
respectively.

e Reward: We propose a novel reward function for
DVFO, which introduces the trade-off between en-
ergy consumption and end-to-end latency. To handle
the constraints of Eq. (4), the clock frequency range
as well as the offloading proportion of feature map
are added to the reward function R. Therefore, the
reward function in DRL is defined as follows:

C(f,&;
R = {e(fg/g)’ f € [fmin7 fmzn]

: (14)
0, otherwise

where ¢ € [0, 1] is the proportion of the feature map
to be offloaded to cloud servers. In the first case,
the clock frequency is within [f,,in, fmin], and we
calculate the reward based on the cost in Eq. (4).
Note that we introduce the parameters f and &, with
the purpose of giving more reward when the clock
frequency of edge device is higher and the propor-
tion of feature map is lower. Otherwise, less rewards
will be given. The second case represents that the
current frequency exceeds the specified frequency

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 06,2024 at 06:02:33 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357218

range, meaning that the target cannot be achieved
even if the minimum or maximum clock frequency
is used. In other words, using the minimum or
maximum clock frequency is actually the “optimal”
action. Therefore, a small negative reward p (= -0.1
experience) is given with penalty.

However, as Fig. 5 shows, most DRL algorithms assume
that the state of the environment is static, in which the
agent is making a decision. That is, the agent first observes
the state and then executes policy inference. However, this
blocking approach of sequential execution is not suitable
for real-world dynamic real-time environment. Because the
state has “slipped” after the agent observes the state of the
environment and executes an action, i.e., the previous state
transitions to a new unobserved state. This environment is
regarded as a concurrent environment in [22]. In particular,
in the edge-cloud collaboration environment with strict time
constraints, we need to use DRL to adjust the frequency of
edge devices and the proportion of feature map to be of-
floaded in real-time, according to the importance of features
and network bandwidth. Therefore, it is crucial to reduce the
overhead of policy inference in DRL. Furthermore, unlike
zTT [31] which considers only a subset of the action space
at a time, although this approach reduces computational
complexity, agent fails to fully explore the environment
resulting in sub-optimal performance. Note that DVFO can
provide optimal solution for a particular edge device.

Concurrent Environment

Blocking Environment

= &

t-1 t

t+1 t+H

Fig. 5. Action trajectories in blocking and concurrent environment.

To overcome these issues, in this work, we utilize
DQN [33] to learn the optimal CPU, GPU and memory
frequencies, as well as the proportion of feature map to be
offloaded for edge devices. We use the concurrency control
mechanism to reduce the overhead of policy inference in
DQN with continuous-time based on a thinking-while-moving
mechanism [22]. The right part of Fig. 5 illustrates this con-
current approach. Specifically, the agent observes the state of
the environment s; at time step ¢. When it selects an action
a¢1¢,5, the previous action a;_p1¢,., has slid to a new
unobserved state s;4.,,, meaning that state capture and
policy inference in concurrent environment can be executed
concurrently. Here H is the duration of the action trajectory
from the state s; to S¢y¢,-

We implement policy inference in concurrent environ-
ment by modifying standard DQN. The continuous-time Q-
value function for the concurrent case from Eq. (2) can be
expressed as following:

’
t =t+tag ’

Q™ (s(t), ar—1,at, t,tas) =/ At Tte(s(t), ar—1(t)) dt’

+ ytas EnaprQ”(s(t +tas),at,at41,t +tas, H—1tas).
t+1

/

(15)

where 45 is the time duration of state capture, policy
inference. The lemma 3.1. in [22] proved that the concur-
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rent continuous-time Bellman operator is a contraction, which
means that the concurrent continuous-time Q-function can
eventually converge to the optimal Q-value @* in Eq. (2). In
this way, agent can explore in parallel the clock frequency of
each processor as well as the proportion of the feature map
to be offloaded. Since the number of actions per branch is
small, all possible values for each domain can be explored.
On the other hand, the thinking-while-moving concurrency
control mechanism learns the joint features of all domains
for fine-grained parameter tuning. By doing so, the com-
plexity of the search space can be reduced from O(CGME)
to O(C' + G+ M +¢€). In DVFO, we employ a thinking-while-
moving mechanism to realize this concurrency control.

Algorithm 1 illustrates the optimization process of
DVFO in detail. We first initialize the parameters of neu-
ral network and replay memory in DRL. Then we take
{\,n,x ~ p(a), B} as the initial state. At the start of train-
ing, the agent in DRL will select an action randomly. In each
time step ¢, the agent captures the state s; in a continuous-
time concurrent environment, and chooses an action a;
using a thinking-while-moving concurrency mechanism. We
use the e-greedy strategy to explore the environment. Next,
we feed the CPU, GPU, and memory frequencies, as well as
the proportion of feature map to be offloaded, selected by
the agent to frequency controller and feature map offloader,
respectively. Simultaneously, the agent obtains an instant
reward r, and the state changes from s; to s.y;. We store
the current state, action, reward, and the state of the next
time step as a transition in the replay memory. At each
gradient step, we first sample mini-batch transitions from
replay memory randomly. Then we use Eq. (15) to calculate
the Q-value in the concurrent environment and update the
network parameters using gradient descent. Finally, we de-
ploy the trained DVFO online to evaluate the performance.
Note that the training process is offline.

5.2 Spatial-Channel Attention Module

The feature map in DNN [12] is the data computed in a layer
of a deep neural network (DNN). Specifically, given input
data (e.g., an image), the feature map of a DNN is computed
by utilizing a specific transformation (e.g., convolution,
pooling, activation function, etc.) on a particular layer of
the neural network. This transformation is determined by
the weights and biases of the neural network, and these
weights and biases can be learned during training. The goal
of feature map is to extract useful features of the input
data so that the neural network can utilize them for tasks
(e.g. classification, regression, etc.). Note that feature map is
closely related to DNN. In convolutional neural networks
(CNN), feature map is critical because is intuitively reveals
how the neural network extracts features from the input
data. For instance, at early layers of a CNN, feature map
shows that the neural network extracting edges or color
patches of an image, while at deeper levels, feature map
might show that the network extracting more complex
features, such as faces or vehicles.

In practice, we leverage existing deep learning frame-
works to determine the feature map of unknown DNN
through the following procedures: 1) forward propagation:
the input data is forward propagated via neural network,

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 06,2024 at 06:02:33 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357218

Algorithm 1: DVFO Optimization Process

Input : user preference A, n; feature map
importance x ~ p(a), and current network
bandwidth B

Output: the optimal settings of hardware frequency
f; and offloaded proportion §; for each task
x

1 Initialize the parameters of network () and target
network Q' with 6; and 0y, respectively;

2 Initialize an empty replay memory D «+ @;

3 Observe state sop = {\,n,x ~ p(a), B};

4 Initialize action ag = {fy, {n} randomly;

5 for environment step t < 1to T do

6 for the i-th stage ¢ <— 1 to N do
7 Observe state s; in concurrent environment;
8 Select an action a; using thinking-while-moving
with e-greedy;
9 Feed frequency controller and feature map
offloader, respectively;
10 Execute computing and offloading, while
obtaining reward r using Eq. (14);
11 Set s; +— S441;
12 Store transition (s¢, at, r(s¢, at), S¢+1) in D;
13 end
14 end
15 for gradient step g <— 1 to G do
16 Sample minibatch of transitions form D;
17 Calculate Q-value using Eq. (15);
18 Update 6; via gradient descent;
19 end

which involves a series of weight matrices, biases and
activation functions. 2) selection of layers: a particular layer
of the feature map is selected, which can be any convolu-
tional layer, fully connected layer, or other type of layer. 3)
extracting activations: for the selected layer, the activations
corresponding to the input data, i.e. the feature map, is
extracted. 4) visualization: use explainable tools to visualize
the extracted feature map. Note that the above procedures
may vary depending on the specific deep learning frame-
work (such as TensorFlow, PyTorch, etc.) or specific network
type (such as CNN, RNN, Transformer, etc.).

Our experiments show that the Pearson correlation co-
efficient between the importance-based indexing and in-
ference contributions of each layer in the DNN is -0.738,
which means there is a linear negative correlation between
these two variables. Furthermore, we also propose a neural
network-based spatial-channel attention module in Fig. 6 to
reveal this correlation more intuitively.

The effectiveness of offloading in DVFO depends on the
skewness [12] of the importance distribution of feature map.
The higher the skewness, the fewer features dominate DNN
inference. Therefore, we leverage a spatial-channel attention
mechanism, namely spatial-channel attention module (SCAM)
as shown in Fig. 6, to evaluate the feature importance
of input data. Attention is a widely used deep learning
technique that allows a network to focus on relevant parts
of the input, and suppress irrelevant ones. We use it to
identify the high important features and the remaining less

important features for guiding feature map offloading.

In this way, we can reduce transmission latency by
offloading the compressed less important features without
significantly sacrificing the accuracy of DNN models. Note
that our proposed SCAM is transparent to the DNN's archi-
tecture. In other words, once the feature map of a DNN has
been determined using existing deep learning frameworks,
SCAM is able to evaluate the importance of feature map
without priori knowledge. Therefore, SCAM is applicable
to DNNs with any architecture.

Given a feature map F € RE*H*W extracted by feature
extractor as input, SCAM sequentially infers a 1D channel
attention map M, € RE*!*! and a 2D spatial attention
map Mg € RV>HXW_ For the arrangement of sequential
process, experimental results in [23] show that channel-first
is better than spatial-first. We next describe the details of
each module.

5.2.1 Channel Attention Module

In general, since each channel of a feature map in DNN
is considered as a feature detector, the channel attention
module in SCAM focuses on “what” is meaningful given
an input data. To fully extract richer channel attention, we
aggregate the spatial information of the feature map using
average pooling (AvgPool) and max pooling (MaxPool). We
then feed the generated average-pooled features and max-
pooled features into a shared network consisting of multi-
layer perceptron (MLP) to obtain channel attention map.
The channel attention is computed as follows:

M, (F) = o(MLP(AvgPool(F)) + MLP(MaxPool(F)))
(16)
where o denotes the sigmoid function.

5.2.2 Spatial Attention Module

As a complement to channel attention, spatial attention focuses
on “where” is an informative part. We also use average pool-
ing and max pooling along the channel axis to aggregate
spatial information of feature map. The generated average
pooling features and max pooling features are concatenated
and convolved by a 3x3 convolutional layer to generate a
spatial attention map. The spatial attention is computed as
follows:

M (F) = o (Conw(3, 3)[AvgPool(F); MaxPool(F)])
(17)
where Conv(3, 3) represents a convolution operation with a
filter size of 3x3.

Arrangement of attention modules. Based on the chan-
nel attention map and spatial attention map obtained by
Eq. (16) and Eq. (17), we can obtain the final attention map
F°“! by element-wise multiplication.

F" = M.(F)®F,

Fout _ Ms (Fin) ® Fin (18)

where ® denotes element-wise multiplication, F*" is the
intermediate attention map. We can derive the importance
distribution of features x ~ p(a) from the normalized
weights in final attention map F°“!, where x represents the
feature map index, and a € (0, 1) is the normalized feature
importance.
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Fig. 6. The overview of spatial-channel attention module (SCAM). The module has two sequential sub-modules: channel attention module and
spatial attention module. The intermediate feature map are divided into the top-k features with high importance and the remaining less important
features by SCAM, which are executed by local DNN and remote DNN, respectively.

Fig. 7 illustrates the descending inference contribution
of each layer in ResNet-18 [34] for CIFAR-100 [8] dataset,
which evaluated by SCAM. Intuitively, only a few fea-
tures make major contributions to DNN inference (e.g.,
top-3 features with the highest importance dominate 60%
of contribution for the whole DNN feature map), while
a large number of remaining less important features con-
tribute insignificantly to DNN inference. In this way, we
can evaluate the importance of different features and keep
the top-k features with high importance for edge execution,
while the remaining less important features are compressed,
and then offloaded for remote execution. Compared with
other explainable AI (XAI) approaches (e.g., CAM [35],
Grad-CAM [36], etc.), SCAM is a lightweight and general
module that can be integrated into DNN architecture with
negligible overhead and trained end-to-end together with
DNN models.

0.4

0.3
0.2
0.1

Inference contribution

12345678 9101112131415161718
Importance-based indexing for each layer in DNN

Fig. 7. Inference contribution of each layer in ResNet-18 [34] to CIFAR-
100 [8] dataset (descending order).

In addition, offloading the less important feature map
is also a challenge especially with low edge-cloud network
bandwidth. Inspired by SPINN [11], we introduce preci-
sion quantization (i.e., convert the feature map with 32-bit
floating-point numbers to 8-bit fixed-length numbers) that
compress the less important feature map to further reduce
transmission latency. In this way, DVFO can effectively
reduce the size of the less important feature map without
significant information loss.

5.3 Combining Local and Remote Inference Results

DVEFO leverages a spatial-channel attention mechanism to
infer the high important feature map on edge devices, while
cloud servers infer the remaining less important feature
map. In order to efficiently and accurately fuse the inference

results of both edge devices and cloud servers, DVFO ap-
plies weighted summation to fuse the inference results, and
produces the final inference output at edge devices locally.

However, it is indeed a challenge to adaptively adjust
the summation weight parameter used in the DVFO frame-
work. To address this issue, we introduce the tera operations
per second (TOPS) performance metric ¢, an include both
effects of the TOPS metric and network bandwidth B in
the determination of the summation weight parameter A.
We perform experiments and collect data on five different
edge devices with different network bandwidth conditions
to collect data for training the summation weight parameter.
In addition, DVFO can further incorporate techniques, such
as few-shot learning [37] and transfer learning [38], to learn
DNN parameters more efficiently, when no sufficient data is
available.

We leverage a two-layer lightweight convolutional neu-
ral network with 16 neural network units per layer, to
optimize the summation weight parameter X using stochas-
tic gradient descent (SGD) algorithm [39], and deploy the
trained A in DVFO. By doing so, DVFO can flexibly adjust
the weights of each component based on the TOPS metric
of the edge device and changes in network bandwidth to
optimize the overall performance. We evaluate in detail
the effect of weighted summation on accuracy and energy
consumption in Section 6.5.

As shown in Fig. 8(a), the summation weight parameter
A is proportional to the TOPS metric o of local edge device.
Obviously, the higher the TOPS metric of edge device, the
larger the contribution of local inference results. Fig. 8(b)
reports the effect of network bandwidth on the summation
weight parameter. It can be concluded that the higher B, the
smaller o, which means that the weight of local inference
results decreases with the improvement of network band-
width, and on the contrary, remote inference dominates the
combination results.

Weighted summation in DVFO we used has the follow-
ing advantages, compared to neural network-based prior
work such as adding an extra convolutional layer for fu-
sion [14]. First, the inference outputs of edge devices and
cloud servers always maintain the same dimension. In
contrast, using neural network (NN) layers (e.g., a fully
connected or convolutional layer) to fuse these two outputs
could possibly break such data alignment, hence reducing
the accuracy of the final inference. Second, such lightweight
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Fig. 8. Impact of (a) TOPS metric « and (b) network bandwidth B on the
summation weight parameter A. We use EfficientNet-BO DNN model.

point-to-point weighted summation has less computation
than neural networks, and adds negligible overhead relative
to the inference at edge devices locally.

6 PERFORMANCE EVALUATION
6.1 DVFO Implementation

As shown in Fig. 9, we use PyTorch 1.8 to implement DVFO
on an edge device, i.e,, NVIDIA Xavier NX for inference
service as a case study. An IMX camera and a microphone
are used as loT device to generate image and speech data.
Our proposed Algorithm 1 in learning-based DVFO is
trained offline with four NVIDIA GeForce GTX 3080 GPUs,
and we convert the local DNN from a float-32 model into
an int-8 model using quantization aware training (QAT)
supported by PyTorch. Different from post training dynamic
quantization (PTDQ) and post training static quantization
(PTSQ), QAT turns on the quantization function during the
training process. Since quantization essentially converts the
high precision of the model into low precision, which is
likely to cause model performance degradation. In this case,
QAT is better than PTDQ and PTSQ. In addition, both the
network and target network with the prioritized experience
replay and e-greedy policy in DRL are trained using Adam
optimizer. Each network has three hidden layers and one
output layer, and each hidden layer has 128, 64, and 32
neural network units, respectively. We set the learning rate,
buffer size and minibatch to 1074, 10 and 256, respectively.

NVIDIA
Xavier NX

Fig. 9. DVFO prototype implementation deployed on NVIDIA Xavier NX
edge platform for edge inference services. We use an IMX camera and
a micorphone as loT devices.

Table 3 lists specific parameters of edge devices and
cloud servers used in DVFO. DVFO controls the CPU and
GPU clock frequencies of edge devices whose specifications
are shown in Table 3. For instance, the CPU of Jetson NX
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has a clock frequency range of 0.1 GHz to 1.4 GHz, and
the GPU clock frequency range of 0.1 GHz to 1.1 GHz. Due
to communication overhead limitations, we select only one
edge device and one remote server for edge-cloud cooper-
ative inference in our experimental evaluation. Intuitively,
the remote servers used in DVFO could also be replaced
edge devices with high performance. Furthermore, we use
nvpmodel, a power management tool from NVIDIA, which
support flexible hardware frequency scaling on-device.

6.2 Experiment Setup

Datasets and DNN models. We evaluate DVFO on CIFAR-
100 [8] and ImageNet-2012 [24] datasets, respectively. The
images with different sizes can comprehensively reflect the
diversity of input data. Due to limited compute resources on
edge devices, we set the batch size to be one for edge-cloud
collaborative inference. We successfully integrated DVFO
with state-of-the-art DNN models and thoroughly evaluated
DVEFO in the following three typical applications: object de-
tection, image classification, and speech recognition. Apart
from EfficientNet-B0O and ViT-B16, we additionally use six
DNN models in Table 5 from three popular DNN families
to process image and speech data, as these DNN models
comprise most of edge applications. Moreover, the remote
DNN in DVFO is constructed by removing the first convo-
lutional layer from the benchmark DNN [12].

Energy consumption measurement. As described in
Section 4.2, the overall energy consumption of edge devices
incorporates computing and offloading energy consump-
tion. To be more specific, we use jetson-stats [40], an open
source monitoring toolkit to periodically profile and record
the overall energy consumption of edge devices in real time.

Baselines. We compare DVFO with the following four
approaches. Note that all experimental results are averaged
over the entire test dataset.

o AppealNet [19]: An edge-cloud collaborative frame-
work that decides whether the task uses a
lightweight DNN model on edge devices or a com-
plex DNN model on cloud servers by identifying the
difficulty of the input data.

o DRLDO [15]: A DVFS-aware offloading framework
that automatically co-optimizes the CPU frequency
of edge devices and the offloaded input data.

e Cloud-only: The whole feature map are offloaded
to cloud servers without edge-cloud collaboration
inference.

o Edge-only: The whole model is executed on edge
devices without edge-cloud collaboration inference.

Since AppealNet deploys DNN with different complex-
ity at edge devices and cloud servers, respectively, we use
the same DNN, including DVFO all the time, in order
to make fair comparisons among different approaches. In
addition, we use the same quantization (i.e., QAT) for Ap-
pealNet, DRLDO, and Cloud-only. All experimental results
are reported on the edge devices listed in Table 3. NVIDIA
Xavier NX as the default edge device, unless otherwise
mentioned. By default, we use 7 = 0.5 to balance energy
consumption and end-to-end latency, and we test 1 from
0 to 1 in Section 6.5. The summation weight parameter A is
initialized to 0.5, and we also test A from 0 to 1 in Section 6.5.
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TABLE 3
The specific parameters of the edge-cloud collaboration device.
Platform TOPS Metric CPU GPU DRAM Power
NVIDIA Jetson Nano ~ 1.9TOPS (INTS8) 4xCortex-A57@1.4GHz 128 xMaxwell@0.9GHz 4GB 5W-10W

Edge NVIDIA Jetson TX2 5.34TOPS (INTS) 6x Cortex-A57@1.4GHz 256 x Pascal@1.3GHz 8GB 7.5W-15W
NVIDIA Xavier NX 21TOPS (INT8) 6xCarmel@1.4GHz 384 x Volta@1.1GHz 8GB 10W-20W
NVIDIA Orin NX 100TOPS (INTS8) 8x Cortex-A78 AE@1.4GHz 1024 x Ampere@0.9GHz 16GB 10W-20W
NVIDIA AGX Orin 275TOPS (INT8) 12x Cortex-A78 AE@2.2GHz 2048 x Ampere@1.3GHz 64GB 15W-60W

Cloud NVIDIA RTX 3080 476TOPS (INT8)  16xIntel Xeon Gold 6226R@2.9GHz  8740x Ampere@1.4GHz 128GB 320W

6.3 Comparison of Inference Performance

We first compare the inference performance of DVFO with
baselines. We use trickle, a lightweight bandwidth control
suite to set the transmission rate of the network band-
width to 5Mbps. Fig. 10 shows the performance comparison
of EfficientNet-BO and ViT-B16 DNN models on different
datasets. We can see that DVFO consistently outperforms all
baselines. To be more specific, the average energy consump-
tion of these two DNN models using DVFO is 18.4%, 31.2%,
39.7%, and 43.4% lower than DRLDO, AppealNet, Cloud-
only, and Edge-only, respectively. Meanwhile, DVFO sig-
nificantly reduces the end-to-end latency by 28.6%~59.1%
on average. Since the DNN is executed on edge devices,
the end-to-end latency of Edge-only is higher than other
approaches. Cloud-only is more sensitive to bandwidth
fluctuations that leads to the highest end-to-end latency
compared to other edge-cloud collaboration approaches.
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Fig. 10. Comparison of end-to-end latency and energy consumption
for EfficientNet-B0O and Vision Transformer using Edge-only and edge-
cloud collaborative inference on CIFAR-100 [8] and ImageNet-2012 [24]
datasets.

Compared with DRLDO and AppealNet, the reduction
of energy consumption and end-to-end latency mainly have
the following two aspects: 1) Co-optimization of frequency
and proportion of offloading. DRLDO only optimizes CPU
frequency and offloading proportion. Since DVFO also takes
GPU and memory frequencies as decision variables in DRL,
which can optimize the hardware frequency to further re-
duce energy consumption and end-to-end latency. In addi-
tion, AppealNet does not utilize DVFS technology to opti-
mize frequency, therefore its energy consumption is higher
than DVFO. More importantly, binary offloading in Appeal-
Net is more sensitive to network bandwidth than partial
offloading. 2) Lightweight offloading mechanism. Compared
with DRLDO and AppealNet that need to offload the origi-

nal feature map to cloud servers, DVFO combines attention
mechanism with quantization technology to compress the
less important feature map to be offloaded, without losing
much information.

Fig. 11 shows that DVFO can maintain similar infer-
ence accuracy to Edge-only (ie., the loss of accuracy is
within 2%), compared to other baseline methods with sig-
nificant drop in accuracy. Note that Edge-only performs
uncompressed original feature map and thus achieves the
highest accuracy. Since AppealNet and Cloud-only lever-
age the same compression technique for binary offloading
(i.e. compress the whole feature map), they suffer from
similar accuracy loss, which significantly reduces accuracy.
DRLDO leverages the partial offloading mechanism similar
to DVFO. However, DVFO leverages a lightweight weighted
summation-based fusion method, the accuracy, therefore,
is higher than that of DRLDO. Such results illustrate the
effective offloading for DVFO, which utilizes an attention
mechanism to identify the less important features combined
with high precision quantization aware training to minimize
accuracy loss.
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Fig. 11. Comparison of benchmark DNN inference accuracy on different
datasets. We set the batch size to 1.

In Fig. 12, we report the trend of the hardware frequen-
cies with inference process on EfficientNet-BO and ViT-B16
under different datasets, respectively. We take the infer-
ence of EfficientNet-BO in Fig. 12(a) under CIFAR-100 [8]
dataset as an example for analysis. The whole end-to-end
latency consists of @ edge inference, ® sum of offloading
and compression, and ® cloud inference (including fusion
operations). We can conclude from Fig. 2 that EfficientNet-
B0 is memory-intensive DNN model, so that the frequencies
of CPU and memory dominate edge inference, while the
frequency of GPU has not yet come close to the perfor-
mance bottleneck. In contrast, the ViT-B16 DNN model with
compute-intensive properties has a significant increase in
the GPU frequency during edge inference (Fig. 12(b) and
Fig. 12(d)), which means that ViT-B16 can effectively utilize
the GPU. Moreover, since DVFO adopts the attention-based
lightweight compression mechanism in Section 5.2 and the
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and ImageNet-2012 [24] datasets, respectively. The execution process
consists of @ edge inference, ® sum of offloading and compression, and
® cloud inference (including fusion operations).

concurrent offloading strategy with negligible overhead
(i.e., thinking-while-moving) in Section 5.1, the offloading
and compression operations have extremely low hardware
frequencies, which can save energy while reducing the
offloading latency. For cloud inference, edge devices does
not involve inference, offloading, and compression opera-
tions, so that DVFO only needs to maintain the hardware
frequencies at which the system normally operates.

Furthermore, we evaluate the policy performance (i.e.,
cumulative rewards) of our proposed concurrent DQN
with thinking-while-moving, compared to six state-of-the-art
(SOTA) and baseline DRL algorithms. As shown in Fig. 13,
Distributional Soft Actor-Critic [41] (DSAC) introduces a
value distribution learning principle to alleviate the over-
estimation problem [33] of the V-function and stabilize the
learning process, based on the maximum entropy reinforce-
ment learning framework, i.e., Soft Actor-Critic [42] (SAC).
As a SOTA DRL algorithm, DSAC with three refinements
(DSAC-T) [43] further inhibit the overestimation to improve
the policy performance after convergence by leveraging
expected value substituting, twin value distribution learn-
ing, and variance-based critic gradient adjusting. However,
DSAC and DSAC-T are not applicable to a dynamic environ-
ment with sequential decisions. In contrast, our proposed
concurrent DQN algorithm encourages the agent in DRL to
explore more environmental states within the same time,
enabling it to solve the co-optimization problem in DVFO
more efficiently and consistently, its policy performance,
therefore, outperforms DSAC and DSAC-T. In addition,
compared to four baseline DRL algorithms, i.e.,, SAC [42]
and DDPG [44], which are based on Off-policy (where data
from historical policies can be utilized for learning), as well
as PPO [45] and TRPO [46], which are based on On-policy
(where data from the current policy can only be utilized
for learning), our concurrent DQN has more significant
policy performance improvements in dynamic concurrent
environments.
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Fig. 13. Comparison of concurrent DQN in DVFO with five state-of-the-
art (SOTA) and popular DRL algorithms.
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Impact of Network Bandwidth

As mentioned before, edge-cloud network bandwidth may
be a bottleneck for efficient feature map offloading, thus it is
important to evaluate the performance of DVFO on different
network bandwidth conditions. Due to energy and cost con-
straints, edge devices are equipped with WiFi modules that
have lower transmission rates compared with cloud servers.
Here we set the network bandwidth between 0.5Mbps and
8Mbps to simulate different network conditions.

The results in Fig. 14 illustrate that the trend of end-
to-end latency for EfficientNet-b0 and ViT-B16 with various
edge-cloud collaboration approaches using CIFAR-100 [21]
and ImageNet-2012 [24] datasets under different network
bandwidths. Benefit from offloading the less important fea-
ture map, the end-to-end latency of DVFO is lower than
other baselines, even if the available network bandwidth is
only 0.5Mbps, which can effectively reduce the end-to-end
latency by 27.3%~44.6%. We also observe that the perfor-
mance improvement of DVFO decreases when the network
bandwidth increases. It means that the network bandwidth
is no longer a bottleneck. The performance improvement
is mainly the appropriate adjustment of the hardware fre-
quency for edge devices.

In contrast, the performance of three baselines are highly
dependent on network bandwidth. On the one hand, the
binary offload mechanism of ApplealNet and Cloud-only
offloads all data to the cloud servers. In particular, the hard-

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 06,2024 at 06:02:33 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357218

)
)

R =@~ EfficientNet-b0 | X | =@= EfficientNet-b0
5 80 == \iT-B16 5 80| == ViT-B16

5 I

Q. Q 60

] g8

o o 40

£ £

(=} o

E £

(o) (@]

1 1

2 3 4 5 6 2 3 4 5 6
Bandwidth (Mbps) Bandwidth (Mbps)
(a) CIFAR-100 (b) ImageNet-2012

Fig. 15. The offloading proportion ¢ of EfficientNet-b0 for CIFAR-100 [21]
and ImageNet-2012 [24] datasets under different network bandwidths.

case discriminator of ApplealNet adds additional overhead
compared to Cloud-only, which has the highest end-to-
end latency, and Cloud-only takes second place. While
DRLDO offloads part of the input data to cloud servers,
the original data is not compressed. In addition, the think-
while-moving concurrent offload mechanism in DVFO is
faster than the conventional reinforcement learning-based
offloading method in DRLDO, and thus has the lowest end-
to-end latency. Overall, DVFO can make better adaptive
adjustments to proportion of offloading and the hardware
frequency of edge devices with the fluctuation of network
bandwidth.

Furthermore, we report the trend of the offloading pro-
portion parameter { on different bandwidth conditions. As
shown in Fig. 15, the offloading proportion parameter £ in
DVFO increases with the bandwidth improvement. Specifi-
cally, only about 20% of the feature map are offloaded to the
cloud servers when the bandwidth is 0.5Mbps. This is due to
the fact that costly communication latency at low bandwidth
overlaps the benefits of offloading, so that DVFO tends to
local inference. In constrast, the offloading proportion of
DVFO is up to 70% at the 8Mbps high bandwidth, which
indicates that the offloading benefit is much higher than the
communication overhead.

Note that the input size of different datasets and DNN
models with different operation intensities also affect the
offloading proportion of feature map. For instance, the of-
floading proportion for ImageNet-2012 dataset in Fig. 15(b)
is 18.7% higher on average than the CIFAR-100 dataset in
Fig. 15(a) with the same bandwidth. Similarly, the offloading
proportion of ViT-B16 with two datasets is 12% higher on
average than that of EfficientNet-bO under different band-
widths. Since the input size in the ImageNet-2012 dataset
and ViT-B16 are more complex than the CIFAR-100 dataset
and EfficientNet-b0 respectively, it means that inference
requires more computing resources. Therefore, DVFO tends
to offload more feature map to cloud servers with abun-
dant computing resources. In summary, DVFO is able to
adaptively adjust the offloading proportion of feature map
under different bandwidths, which also explains the perfor-
mance improvement of DVFO with increasing bandwidth
in Fig. 14.

6.5 Sensitivity Analysis

6.5.1 Impact of the summation weight parameter A

Taking EfficientNet-b0 [25] as an example, Fig.16(a) and
Fig.16(b) shows the impact of the summation weight param-

eter A on the performance of CIFAR-100 [21] and ImageNet-
2012 [24] datasets, respectively. It can be seen that energy
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Fig. 16. Sensitivity analysis of the summation weight parameter A on
different datasets. We use EfficientNet-b0 [25] as a test case.
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consumption and inference accuracy improve with the in-
crease of \. In particular, a smaller A (< 0.2) significantly de-
creases accuracy, while a higher A (> 0.8) sharply increases
inference energy consumption. The intuition behind this is
that a smaller A reduces the contribution of important fea-
tures locally, which misses some important information in
inference and degrades accuracy. In contrast, increasing the
value of ), forces the majority of the inference tasks to the
local DNN, which leads to higher energy consumption. Note
that the optimal value of A depends on the characteristics of
the data in the training dataset. In practice, setting A to an
appropriate value between 0.4 and 0.6 can effectively reduce
energy consumption while maintaining high accuracy.

6.5.2 Impact of the relative importance coefficient n

In Fig.17, we also take EfficientNet-b0 [25] as an example
to show the impact of weight parameter 7 that trade-
off between energy consumption and end-to-end latency,
given different datasets. We observe that DVFO significantly
reduces energy consumption with increasing values of 7
(> 0.1), while maintaining low end-to-end latency 1 (< 0.6).
Specifically, compared to n = 0.1, even though DVFO
reduced end-to-end latency by up to 39.2% at = 0.4 on
CIFAR-100 [8] dataset, the energy consumption is only in-
creased by 16.5%. We also observe a similar phenomenon on
the ImageNet-2012 [24] dataset. In summary, DVFO allows
users to adjust the trade-off between energy consumption
and end-to-end latency by selecting an appropriate weight
parameter 7.

6.6 Comparison of various fusion methods

In this section, we compare the accuracy loss and runtime
overhead (i.e., energy consumption and end-to-end latency)
induced by weighted summation in DVFO and NN-based
fusion methods, compared to single-device inference (with-
out fusion). In particular, it can be seen from Fig. 16 that
the appropriate value of A has different preferences under
different datasets. To achieve high accuracy while maintain-
ing low energy consumption, we set A to 0.5 for CIFAR-
100 [21] and 0.6 for ImageNet-2012 [24], respectively. We
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TABLE 4
Comparison of various fusion methods.

Accuracy (%)
CIFAR-100 ImageNet-2012
91.84 74.52
87.39 (445 1) 70.63 (3.89 |)
82.93 (8.91) 68.24 (6.28 |)
91.16 (0.68 ) 73.96 (0.56 )

Fusion methods

Single-device (without fusion)
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Fig. 18. Comparison of runtime overhead for different fuse methods.

use a filter size of 3x3 and a softmax function to implement
a convolutional layer and a fully connected layer for fusing
inference results, respectively.

As shown in Table 4, the weighted summation we used
in DVFO can achieve the lowest accuracy loss (within 1%),
compared to single-device inference. This is due to weighted
summation enables both the inference results of edge de-
vices and cloud servers to maintain a highly consistent data
alignment, and such lightweight point-to-point weighting
has low-complexity with negligible overhead. The main
challenge of weighted summation is that the output of Local
DNN at edge devices and Remote DNN at cloud servers
may potentially have a big difference. For instance, a few but
the output values with high importance in Local DNN could
be overlapped by the output values with less importance in
Remote DNN. We can maintain A in an appropriate range
by manual fine-tuning or utilizing a learning-based adap-
tive strategy in DVFO, thereby minimizing the additional
inference accuracy loss that may result. In contrast, neural
network-based fusion approaches (i.e., fully connected lay-
ers and convolutional layers) have significant accuracy loss,
which is 6.7 x and 12.3x that of the weighted summation in
DVFO, respectively. As pointed out in Section 5.3, neural
network-based fusion approaches break the alignment of
weighted values and thus significantly reduce inference
accuracy.

As shown the result in Fig. 18, we compare the runtime
overhead of weighted summation and NN-based fusion
methods (i.e. convolutional and fully connected layers).
First, in terms of energy consumption in Fig. 18(a), com-
pared to the NN-based fusion method, the energy con-
sumption of weighted summation is reduced by 56.8% on
average. Second, weighted summation reduces the average
end-to-end latency by up to 77.5%, as shown in Fig. 18(b).
It also illustrates the energy efficiency of such lightweight
point-to-point fusion methods. In contrast, the NN-based
fusion methods significantly reduce energy efficiency due
to inherently expensive computation.

6.7 Overhead Analysis
6.7.1 Training Overhead

We first evaluate the training overhead comparison of
DVFO with/without a thinking-while-moving training strate-
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gies, here we use EfficientNet-b0 [25] on CIFAR-100 [21]
and ImageNet-2012 [24] datasets as a test case. As shown
in Fig. 19, DVFO with thinking-while-moving shows faster
convergence during the training procedure, indicating that
although the attention module increases the complexity
of learning, DVFO can still guarantee fast convergence of
training by designing appropriate cost metrics and parallel
strategies.
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Fig. 19. The training performance of DVFO with/without a thinking-
while-moving mechanism on CIFAR-100 [21] and ImageNet-2012 [24]
datasets. We use EfficientNet-b0 [25] as a test case.

6.7.2 Runtime Overhead

The attention module in DVFO introduces additional run-
time overhead. We evaluate the energy consumption of the
attention module (i.e., SCAM) averaged over 10 inference.
As shown in Fig. 20, DVFO consumes less energy due to
uses an extremely lightweight attention module. The energy
consumption of DVFO is 38%~62% lower than AppealNet
and 63%~71% lower than DRLDO.

6.8 Evaluation of Scalability

In this section, we evaluate the scalability of DVFO for
various DNN models. Note that we performance extensive
experiments on heterogeneous edge devices (i.e., Jetson
Nano, Jetson TX2, Orin NX and AGX Orin in Table 3),
but our DVFO framework is also applicable to homoge-
neous edge devices in general. We take the widely-deployed
deep learning models, ResNet-18 [34], Inception-v3 [47], and
MobileNet-v2 [48] as the image classification services, the
widely-deployed deep learning models, YOLOv3-Tiny [49]
and RetinaNet [50], as the object detection services, and
the widely-deployed deep learning model, DeepSpeech [51],
as the speech recognition service. The evaluation results
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Fig. 20. Comparison of runtime overhead for different datasets.
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are reported in Table 5. We can conclude that DVFO con-
sistently outperforms AppealNet and DRLDO in terms of
end-to-end latency, energy consumption, and accuracy loss,
respectively. To be more specific, DVFO reduces the average
end-to-end latency by 49.7% and 36.2% on Jetson Nano,
compared with AppealNet and DRLDO, respectively, and
the performance improvement remains consistent across
the other three edge devices with high TOPS metric
(39.4%~55.2% and 27.2%~36.2% respectively). For energy
consumption, compared to AppealNet and DRLDO, DVFO
achieves energy-saving of up to 42.6% and 53% for Jetson
Nano on average, respectively. Since the energy efficiency
of other edge devices (i.e., TX2, Orin NX, and AGX Orin) is
lower than that of Jetson Nano, the energy-saving is conser-
vative, but still better than the baseline (16.9%~31.3%). As
mentioned in Section 6.6, benefit from the efficient fusion
method based on weighted summation, the average accu-
racy loss of DVFO on different datasets and heterogeneous
edge devices remains within 1%, which is much lower
than that of AppealNet and DRLDO (2.44x ~5.4x). Overall,
DVFO can seamlessly adapt to heterogeneous edge devices
and various widely-deployed DNN models, and thus it has
flexible scalability.

7 RELATED WORK

7.1 Learning-based DVFS

Prior work [13], [15], [17], [18], [20], [52]-[55] has pro-
posed a series of deep reinforcement learning-based DVFS
techniques to reduce energy consumption. For instance,
DRL quality optimizer [13] combines deep reinforcement
learning-based DVFES technology with LSTM-based selec-
tors to reduce end-to-end latency and improve quality
of service (QoS). QL-HDS [18] combines Q-learning with
stacked auto-encoder, and proposes a hybrid DVFS energy-
saving scheduling scheme based on Q-learning. DQL-
EES [53] and Double-Q governor [54] leverage double-
Q learning-based DVFS technology that dynamically scale
computing frequency to achieve efficient energy-saving.
Hybrid DVFS [52] considers heterogeneous workloads, dy-
namic relaxation and power constraints, which utilizes
reinforcement learning-based hybrid DVFS technology to
achieve energy-saving. CARTAD [17] leverages reinforce-
ment learning-based task scheduling and DVES to jointly
optimize end-to-end latency and temperature on multi-core
CPUs systems. Ring-DVFS [55] proposes an enhanced rein-
forcement learning-based DVFS technique to reduce power
consumption on multi-core CPU systems.

Most related to our work is DRLDO [15], a data offload-
ing scheme that combines DRL and DVEFS to reduce the
energy consumption of IoT devices. However, the above-
mentioned DRL-based DVFS approaches including [15] only
optimize the CPU frequency of edge devices, ignoring the
impact of GPU and memory frequencies on energy con-
sumption. Moreover, DRLDO [15] offloads uncompressed
raw data to cloud servers, causing system instability and
bandwidth bottlenecks. In this work, we introduce DVFS
into edge-cloud collaborative architecture, i.e., using DVFS
for DNN feature map offloading to further improve the
energy-saving effect of edge devices. In addition, we utilize
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the attention mechanism to efficiently compress the orig-
inal DNN feature map, reducing the transmission delay
of compressed DNN feature map to be offloaded while
maintaining accuracy.

7.2 Edge-cloud collaborative DNN model inference

Since edge devices are usually resource-constrained, it is
necessary to utilize cloud servers with abundant comput-
ing resources for edge-cloud collaborative inference to re-
duce end-to-end latency. Existing studies [11], [56] have
been revealed that transmission of DNN feature map is a
major network bottleneck for offloading. Therefore, prior
work [11], [12], [14], [56] has proposed various collaborative
inference methods that combine a series of compression
techniques to reduce the transmission of DNN feature map.
For instance, DeepCOD [14] and Starfish [56] designs effi-
cient encoders and decoders based on compressed sensing
theory and application-specific codecs, respectively, and
then offloads the compressed data from the local to the
edge server, thereby effectively reducing end-to-end delays.
AgileNN [12] uses attention mechanism to identify the
importance of DNN feature map, and it reduces the end-to-
end latency by offloading a large number of compressed less
important features to remote. SPINN [11] achieves the pro-
gressive inference for edge-cloud collaboration by placing
multiple early-exit points in the neural network, which not
only considers the resource-constrained local devices, but
also takes into account the instability and communication
costs of the cloud.

In addition, [57] proposes a pipelined scheme for collab-
orative inference on a heterogeneous IoT edge cluster to re-
duce redundant calculation and communication overhead in
order to maximize the throughput. DCCI [58] and Appeal-
Net [19] perform binary offloading (local inference only or
full offloading to the cloud servers) on the input data based
on the hard-case discriminator. ELF [59] splits a single video
frame and offloads the segmented local video frames to
multiple edge servers, which accelerates parallel inference
for high resolution vision models. CNNPC [60] jointly op-
timizes model partitioning and compression, which signifi-
cantly speeds up collaborative inference with the end-edge-
cloud computing paradigm. However, these approaches do
not incorporate optimization of hardware frequency for bet-
ter energy saving. Our approach combines the advantages
of DVFS and feature map offloading.

7.3 On-device DNN model inference

The MLPerf Mobile Inference Benchmark [61] reveals im-
pressive progress in on-device inference [62], benefiting
from the synergistic impact of increasing performance at the
edge, highly flexible lightweight models, and efficient deep
learning frameworks. We highlight that previous work [62]-
[69] can also achieve effective energy saving and low end-
to-end latency only through efficient on-device inference,
except for edge-cloud collaborative inference. Mistify [63]
and NeuralUCB [64] studied the automated customization
for on-device DL inference, which reduce DNN manual
porting time and improve quality of experience (QoE) by
automatically porting cloud-based compressed models to
edge devices and online learning algorithms, respectively.
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TABLE 5
Evaluation of scalability for edge inference services.

. End-to-end latency (ms) Energy consumption (mJ) Accuracy loss (%)
Edge Device Model AppealNet DRLDO | DVFO Appeall\(lge}jr DRIDO  DVFO AppealNet DRLDO  DVFO

ResNet-18 241 206 148 6217 5723 4867 162 213 0.54
Inception-v4 25.6 24.9 16.7 6894 6421 5346 5.14 347 0.98
NVIDIA MobileNet-v2 30.7 28.4 17.6 7082 6804 5623 2.84 1.69 0.63
Jetson Nano | YOLOv3-Tiny 26.8 247 18.4 6489 6174 5391 3.87 226 0.68
RetinaNet 35.4 316 25.9 8256 7498 6157 2.65 1.54 0.78
DeepSpeech 16.6 143 12,5 5733 5289 4826 2.24 1.28 0.35

26.5 24.1 6779 6318 3.56 2.06
Average (+49.7%)  (+362%) 177 | (+53.0%) | (+42.6%) | 431 (5.4x) Ga12x) | 066
ResNet-18 189 146 10.8 6897 6438 5278 314 187 0.48
Inception-v4 16.3 14.9 121 7018 6381 5469 2.36 1.65 0.49
NVIDIA MobileNet-v2 21.6 184 14.9 8248 7456 6597 371 2.59 1.35
Jetson TX2 YOLOV3-Tiny 19.4 15.1 12.7 6732 6279 5367 1.95 1.46 0.82
RetinaNet 27.6 215 16.2 9546 8948 7294 3.36 2.08 1.23
DeepSpeech 12.4 10.7 8.3 6754 6017 5309 2.46 1.61 0.27

19.4 15.9 7533 6920 2.83 1.88
Average +55.2%)  (+27.2%) 120 | (4300%) | (+17.6%) | %80 | Gesx) | @aax) | O77
ResNet-18 6.4 59 36 13421 12904 | 10543 2.68 145 0.37
Inception-v4 5.9 53 32 13862 12976 | 10863 1.97 1.34 0.41
NVIDIA MobileNet-v2 7.2 6.9 4.1 16235 15786 | 12973 298 237 0.86
Jetson Orin NX | YOLOv3-Tiny 6.9 62 3.7 14732 13698 | 11765 1.59 1.24 0.67
RetinaNet 7.8 7.1 5.6 17032 16467 | 12951 267 1.85 0.92
DeepSpeech 57 49 3.1 12547 11638 | 10236 2.08 1.37 0.21

6.7 6.1 14578 13912 2.33 1.60
Average (+418%)  (+36.0%) > +20.7%) | (+169%) | 1% | @o9x) | s1x) | ¥
ResNet-18 36 31 2.1 23246 21529 | 16438 213 117 0.24
Inception-v4 34 33 1.9 21358 20469 | 15962 1.68 1.54 0.27
NVIDIA MobileNet-v2 42 39 2.6 26124 25394 | 17341 2.38 1.46 0.52
Jetson AGX Orin | YOLOv3-Tiny 3.8 3.6 2.3 24258 22964 | 16057 1.26 0.94 0.41
RetinaNet 45 42 2.9 29571 27837 | 18725 2.14 1.48 0.73
DeepSpeech 31 2.8 1.8 20469 18967 | 15143 1.76 1.07 0.15

3.8 3.5 24171 22860 1.89 1.28
Average (+39.4%)  (+343%) >3 +31.3%) | (+274%) | 11 | @ssx) | 2sx) | O

MEmCom [65] significantly improves the on-device infer-
ence performance of recommendation models by using a
model compression technique based on multi-embedding
compression. DeiT-Tiny [66] is the first empirical study on
efficient on-device inference for visual transformer, reducing
the end-to-end latency by removing redundant attention
heads and forward neural network layers. eNODE [67]
achieves efficient on-device inference for neural differen-
tial equations (NODEs) by architecture-algorithm co-design.
BlastNet [68] leverages dual-block based fine-grained dy-
namic scheduling to enable on-device real-time multi-model
inference across CPU-GPU. Similarly, POS [69] leverages
operator granularity-oriented computational graph opti-
mization with reinforcement learning to accelerate multi-
model real-time on-device inference. AsyMo [62] leverages
model partitioning based on cost-model and asymmetric
task scheduling for mobile CPUs to enable energy-efficient
on-device inference.

As privacy security for on-device inference becomes in-
creasingly challenging, ShadowNet [70] leverages a trusted
execution environment (TEE) to preserve model privacy
while ensuring efficient inference. Note that on-device in-
ference is orthogonal to our work, which can further reduce
end-to-end latency and energy consumption.

8 CONCLUSION

In this work, we propose DVFO, an DVEFES enabled learning-
based energy-efficient collaborative inference framework.
DVEFO co-optimizes the CPU, GPU, and memory frequen-
cies of edge devices, as well as the proportion of feature

map to be offloaded to cloud servers. We apply concurrent
control mechanism named thinking-while-moving in learning-
based optimization, and propose an importance-based fea-
ture map offloading scheme by leveraging a spatial-channel
attention mechanism, to accelerate convergence and allevi-
ate edge-cloud network bottlenecks, respectively. Extensive
evaluations on widely-deployed DNN models with three
domain-specific on five heterogeneous edge devices show
that DVFO significantly outperforms existing offloading
schemes in terms of energy consumption and end-to-end
latency, while maintaining high accuracy.
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