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TapWristband: A Wearable Keypad System Based
on Wrist Vibration Sensing
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Abstract—Fine-grained human motion detection has become
increasingly important with the growing popularity of human
computer interaction (HCI). However, traditional gesture-based
HCI systems often require the design of new operation modes
rather than conforming to user habits, thus increasing system
learning costs. In this paper, we present TapWristband, a novel
wearable sensor-based vibration sensing system that detects finger
tapping by measuring wrist vibrations. We first perform real-world
experiments to collect measurements for modeling the effects of the
tapping motion on wearable wristband sensors including piezo-
electric transducer (PZT) and inertial measurement unit (IMU).
We find that a damped vibration model can be used to represent
the relaxing phase of a vibration response due to tapping motion.
Thus, we propose a mutual cross-correlation-based event segmen-
tation algorithm to extract the vibration signal during the relaxing
phase. After that, we develop feature extraction and classification
algorithms to recognize the tapping patterns of five fingers across
twelve key locations of a keypad system. Finally, we performed
extensive experiments with thirteen participants to evaluate our
system. Experimental results show that our low-cost vibration
sensing system can achieve an average accuracy of over 93% with
a tapping speed of over 100 taps per minute in real-world tapping
scenarios.

Index Terms—Human-cyber-physical systems, tap recognition,
wearable sensors, wireless sensing.

I. INTRODUCTION

W ITH the development of Internet of Things (IoT) systems
and signal-processing technologies, wearable devices

are gaining momentum in various human-computer interaction
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(HCI) applications [2], [3], [4]. There is a pressing need for com-
pact, readily accessible input devices that take advantage of the
fast-developing wearable sensing and computing techniques [1].

Given the pivotal role of motion sensing in HCI, motion
detection has been an active research area of HCI in recent
years [26], [30], [34]. For HCI technologies based on motion
sensing, the ability to detect subtle finger movements is of
paramount importance as it directly impacts the overall quality
of service provided by the HCI system [6]. Thus, a large amount
of research has been undertaken in the field of finger motion
detection. For instance, studies in [5] and [6] have proposed to
use of sonar and radar sensors for tracking finger movements,
specifically for fine motion of finger recognition purposes. While
these studies are capable of accurate finger motion tracking, they
all use wireless sensors and are sensitive to external disturbances,
resulting in unstable performance in real-world HCI scenarios.
Recognizing that finger tapping is one of the most effective
input methods in HCI, [9] and [14] developed finger tapping
detection systems that operate based on the surface vibration
mechanism. However, these systems require the placement of
sensors at stationary positions on a surface, which compromises
the mobility of the systems.

To improve mobility and sensing precision, recent research
studies have proposed to use of sensors on wearable devices to
detect and recognize finger tapping. For example, in research [8],
[13], [16], one hand of a person was used as a keyboard, with
the other hand used for typing, and tapping data was gathered by
analyzing the vibrations of the hand serving as the keyboard. As
another example, a typing ring was developed in [11] to detect
human typing motion. Even though these wearable sensor-based
systems can improve mobility, they are not consistent with the
typing habits of users and thus have not been used as effective
HCI input methods. In this work, we aim to develop a vibration
sensing-based tap recognition method, which follows the typing
behavior of users without adding much learning cost, leading to
a more natural and efficient HCI input system.

Given the prevalence of smart devices such as bracelets
and watches worn on the wrist of a person, sensors on these
wearable devices can be utilized to gather vibration data for tap
recognition. When a finger taps on a rigid surface, not only the
surface vibrates [15], but also the skin of the person, including
his or her wrist and hand, as some of the vibration signals
are reflected back [16]. As shown in Fig. 1, tapping fingers
generate reflected vibrations in various parts of the hand, which
are then propagated to the wrist via different paths [10]. Consid-
ering that different tapping vibrations traverse through varying
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Fig. 1. Overview of vibration sensing-based HCI system: wrist vibration
sensing is used to enable mapping of finger tapping on different locations to
different keys of a keypad.

distributions of bones and muscles, we ask ourselves a question:
is it feasible to differentiate the vibration signals reflected back
to the user when tapping with different fingers? Inspired by this
question, we propose TapWristband, an innovative system that
senses vibrations at the wrist of a person to detect and recognize
the finger tapping of the person. More specifically, as illustrated
in Fig. 1, sensors located on wrists capture the vibrations caused
by finger tapping and taps at different locations are mapped to
corresponding keys on keypads. Therefore, TapWristband can
be used as a keypad that allows typing on any surface that causes
muscle vibrations.

The primary hurdle in achieving a robust and accurate wrist
vibration sensing system lies in the stochastic nature of the
vibration signal due to tapping. Each individual person has
their own tapping habit, which involves varying speeds and
strengths. Thus, it is a big challenge to eliminate the random
interference in tapping and recognize different tapping motions.
Our experiments revealed that the vibration signal from any
complex tapping motion can be separated into two phases: a
forced vibration phase and a relaxing vibration phase. During the
forced vibration phase, the vibration signal has high uncertainty
due to different tap intensities, angles, and speeds of tapping. In
contrast, the relaxing vibration phase is a process, in which the
vibration energy is dissipated across the muscles of the finger, the
hand, and the wrist of a person. During this phase, the vibration
signal is mainly determined by the initial state of vibration
and the unique shape and structure of the hand of the person,
making it less prone to other interference. Therefore, relaxing
vibration signals are more robust and generalizable than forced
vibration signals, in terms of tapping recognition. This leads to
two technical issues we aim to address: (1) How to extract the
relaxing vibration signal from a tapping event. (2) How to tailor
this approach to accommodate the habits of various users.

To deal with these issues, we develop a hybrid damped
vibration model for the relaxing vibration phase and propose
a wrist vibration recognition framework using the vibration
signal in the separated relaxing vibration phase. The frame-
work initiates by identifying event occurrences and mitigating

interference through an energy window extraction algorithm and
signal decay fitting. Following this, the framework employs
a mutual correlation-based exact segmentation algorithm for
the adaptive precise extraction of relaxing vibrations. After
that, we propose a feature classification based on vibration
propagation dispersion and use a feature selection algorithm
and joint classification algorithm to recognize wrist vibration
caused by finger tapping. Finally, we constructed our system
TapWristband for examination based on the above framework
using IMU (Inertial Measurement Unit) and PZT (Piezoelectric)
sensors. The evaluation of the system involves 13 volunteers and
the evaluation shows an accuracy of over 93% and a tapping
speed of over 100 keystrokes per minute in real-world typing
scenarios.

Our framework is designed on the basis of a wrist vibration
model. Our design aims to operate independently of the sensors
based on the spring models and not be limited by the type of vi-
bration sensors used in actual HCI systems. To accomplish this,
we meticulously selected vibration sensors for our experiments,
taking into account several key attributes: widespread usage,
market availability, ease of integration, and diverse sensing
principles.

In our real-world experiments, we employed two types of vi-
bration sensors: PZT and IMU. PZT sensors offer the advantages
of sensitivity, low power consumption, and they can operate
passively. However, they have a drawback in that the vibration
signals are sensitive to the shape of the sensors. Moreover, pyro-
electric effects may interfere with the measurement of mechan-
ical quantities. On the other hand, IMU sensors can be tightly
integrated with equipment. They are less affected by changes in
sensor shape and are easy to attach to the wrist. However, IMUs
do have the drifting issue. Considering the varying vibration
sensing characteristics of different sensors, we proposed using
sensor data normalization method. This ensures that the signal
input to our wrist vibration recognition framework represents
a standardized vibration signal. Our validation experiments,
which involved constructing separate systems using both PZT
and IMU sensors, demonstrated that our framework is effective
for sensors based on the spring oscillator principle.

Furthermore, since our framework only senses wrist vibra-
tions, we do not need to ask users to rest their wrists at fixed
positions. As long as the height of the wrist relative to the tapping
surface is fixed, we also do not require the tapping to start from
the same initial positions. The core of the recognition depends
on the relative position of the fingers and the palm of the hand.
As a result, the TapWristband recognizes flexible tapping and
even tapping without visualization on any desktop surface.

In summary, the contributions of this paper are as follows:
� We propose and validate a damped vibration model by

performing experiments with multiple vibration sensors to
study the effects of tapping motion on wearable wristband
sensors.

� We develop a mutual cross-correlation-based event seg-
mentation algorithm to extract vibration signals during a
relaxing phase, which is more robust to interference.

� We design and implement a wrist vibration recogni-
tion system TapWristband with feature extraction and
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classification algorithms to recognize the tapping patterns
of five fingers across twelve keys of a keypad system.

� Our extensive experiments and evaluation show that Tap-
Wristband system is accurate and convenient to use in
real-world scenarios.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III introduces the wrist
vibration model and model validation. Section IV introduces
the overview of the whole system. Section V presents the
detailed design of TapWristband. Sections VI and VII show
the experimental implementation and the experimental results,
respectively. Section VIII discusses the future work. Section IX
concludes the whole paper.

II. RELATED WORK

Providing efficient and concise means of human-computer
interaction for IoT devices has been a research problem for
many years [1]. Traditionally, speech-based methods have been
used for interaction [17], but they can lead to serious informa-
tion leakage and speech input is more sensitive to noise [18].
Thus a variety of gesture-based recognition techniques have
been proposed for human-computer interaction [19], [21], [23],
[31], [35]. Since the pattern of actions determines the input
efficiency, we classify them into two categories based on the
difference in the pattern of gesture actions: customized gestures,
and keystroke recognition.

A. Customized Gesture Recognition

Initially, gesture sensing techniques were investigated, using
a variety of different sensors that were able to recognize several
specific gestures [27], [30], [35]. However, these gestures were
limited in their ability to convey complex information. Later,
handwriting tracking techniques were investigated [24], [25],
but the computing and hardware costs were too high to ensure
accuracy. In addition, all of the above gesture recognition tech-
niques need to increase the learning cost of the user. Under this
thinking, some finger movement tracking algorithms have been
studied using various wireless signals, such as frequency modu-
lated continuous wave (FMCW) [33], millimeter wave [6], [28],
and ultrasound [5], [34], to perform high-precision heuristic
hand gesture recognition. These methods are efficient in detect-
ing handwriting movements, but require expensive equipment,
higher computing costs, and can only be applied to some special
occasions.

B. Keystroke Recognition

Unlike customized gesture recognition, keystroke recognition
does not require additional learning costs for the user. Therefore,
it is more user-friendly and has high input efficiency. Initially,
algorithms for detecting tapping movements by surface vibra-
tion were provided [10], [14], [29], [36], [37]. However, these
techniques resulted in a keyboard that was difficult to move
around and was susceptible to desktop noise, resulting in a poor
user experience. So some people study the keystroke recognition
technology of wearable devices [19], [22], [38], [39], but these

TABLE I
MOTIVATION OF THE TAPWRISTBAND

wearable devices need to be specially customized and do not
meet people’s daily habits, which increases the cost of wearing
and using the user. Then someone thought of using a part of
the body as a keyboard, through the sensor to collect body
information to recognize the keys, these keyboards have the use
of fingers, the back of the hand has been arm [13], [16], [26], [41]
and so on. They do solve the problem of carrying the keyboard,
but using the body as a keyboard does not work stably for a long
time and is not a comfortable option.

Inspired by the aforementioned studies, we found the closer
the gesture patterns are to those of a real keyboard, the more
confident and motivated the user is, and thus the better it works.
As shown in Table I, TapWristband aims to mimic the standard
gestures of a one-handed operation of a mini-keyboard by iden-
tifying tap vibrations from the wrist. This technology can be
operated on any hard surface or objects, and even without visual
observation. The excellent integrability of TapWristband allows
users to interact with it as if they were typing in a traditional way,
thus enhancing the usability of this technology and unlocking
its potential.

III. VIBRATION MODELING AND VALIDATION

In this section, we formulated a model to describe the vibra-
tions generated by finger tapping at the wrist. Subsequently, we
validated our constructed model across multiple dimensions.

A. Vibration Mode

We have observed that the vibration produced by a person
tapping down with a finger varies depending on the finger and the
part of the finger used (fingernail, fingertip, fingertip belly), and
this difference is transmitted to the wrist. In order to distinguish
between vibration signals resulting from taps made by different
fingers and at different locations, it is necessary to construct a
model that accurately represents the vibration produced during
the tapping process. The entire tapping action includes the finger
forcefully moving upward, then moving downward, and finally
the fingers contact the desktop to make a tap. As shown in
Fig. 2, the vibration signal can be divided into two segments:
the first being the muscle-driven movement of the hand, which
we call the forced vibration, and the second being the relaxing
vibration of various parts of the hand, which we call the relaxing
vibration. Throughout the tapping event, the wrist experiences
pulling forces from the entire mass system of the hand [22].
Consequently, the coupled oscillations at the wrist can be utilized
to analyze the finger’s state [32].

Observations indicate that the relaxing vibration possesses
objective properties with enhanced generalization capabilities
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Fig. 2. Damped vibration model of hand vibration signals. (a) The vibration
signals of the tapping wrist, where the signal in the black box indicates the
forced vibration signal and the signal in the brown box indicates the relaxing
vibration signal; (b) Damped vibration model of a single mass; (c) Results of
fitting multiple damped vibrations of a wrist relaxing vibration.

Fig. 3. Schematic diagram of generation and propagation of hand damped vi-
brations. (a)The vibration at the wrist is affected by the vibration and propagation
of the mass in the hand; (b)Vibration is concentrated in the z-axis component at
the wrist.

and stability, in contrast to the initial muscle-driven phase.
However, the complexity of the human hand, which consists of
27 bones and corresponding soft-tissue structures, complicates
the direct modeling of hand vibration equations. We use common
market sensors such as IMU and PZT vibration sensors, which
are based on the spring oscillator principle, as shown in Fig. 2.
In the relaxing vibration, there are no more forcing factors. The
initial conditions are determined by the initial potential energy.
Therefore, we can consider the hand vibration as a composite
damped vibration system. Finally, the wrist vibration signal
obtained by the sensor is the combination of Z-axis components
of multiple damped vibrations. As shown in Fig. 3, the vibration
at the wrist is the projection of the signals from various parts of
the hand in the z-axis direction. Therefore, the coupled vibration
at the wrist can be regarded as the synthesis of multiple damped

vibrations in the same direction, which can be expressed as:

x(t) =

n∑
i=1

xi(t) cos(γi) (1)

where x(t) is the displacement of the object at time t, γi denotes
the angle between the vibration of the ith mass and the z-axis,
and xi(t) denotes the damped vibration of the ith mass. The
sensor we use is the principle of spring oscillator, thus xi(t) can
be expressed as [12]:

xi(t) = Aie
−ζiωni

t cos (ωdi
t− φi) (2)

whereAi and φi correspond to the amplitude and initial phase of
the ith signal, respectively. The damping ratio is represented by
ζi. The undamped natural frequency is denoted byωni

, while the
damped frequency is represented byωdi

. Note that in the context
of the ith damped oscillation, ζi represents the proportion of
the damping force to the critical damping force. The system
transitions into an overdamped state and halts oscillation when
ζi > 1. At ζi = 1, the system achieves a critically damped state,
eliminating oscillation. The system is deemed underdamped and
displays oscillatory behavior when ζi < 1, which is also the case
with this system. The undamped natural frequency, denoted by

ωni
=

√
ki

mi
, dictates the oscillation frequency of the particle

in the absence of damping, where mi signifies the mass of the
particle and ki is the spring constant. The damped frequency,
represented by ωdi

= ωni

√
1− ζ2i , determines the oscillation

frequency of the system in the presence of damping. An interest-
ing observation from this study is that post the finger’s strike and
subsequent relaxing vibrations, the vibration parameters of the
hand mass system, barring the amplitudeAi and initial phase φi,
are self-determined and remain unaffected by muscle movement.

The coupled signals have two main sources: the first source
is the damped vibrations generated by the tissues at the wrist,
and the other one originates from the propagation of vibrations
from other fingers of the hand. The information on the intrinsic
frequency and damping of the different signals is included in
the corresponding frequencies, which can be visualized by the
Fourier transform. The coupled vibration signal after a Fourier
transform can be represented as:

X(ω) =

∫ ∞
−∞

n∑
i=1

[
Zie

−ζωnt cos(ωdt− φ)
]
e−iωtdt (3)

where X(ω) denotes the Fourier transform of the damped os-
cillation, with ω representing the frequency. Eq. (3) provides a
representation of the damped oscillation x(t) in the frequency
domain, effectively describing the distribution of the damped
oscillation across various frequencies.

It is worth mentioning that the information such as initial
phase φ, intrinsic frequency ωn, and damping ζ of the vibration
signal is closely related to the soft tissues and mass, etc., in
which the signal is generated. Moreover, during propagation,
vibrations have different speeds, attenuation, and frequency
characteristics as they propagate through bone, skin, soft tis-
sue, etc. Thus, different ω can reflect the characteristics of the
corresponding vibration signal in its frequency band range [42].
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Different keystrokes excite different vibration generations and
pass through different tissues, and thus different keystrokes can
be distinguished. In addition, the muscle, skin, and bone tissues
of different human hands are similar in structure, although
slightly different, and thus the relaxing vibration signals have
a strong generalization ability.

B. Model Validation

In this subsection, we conduct experimental validation of the
aforementioned models and analysis. Specifically, we explore
the stability, distinguishability, and generalizability of finger
tapping events and their associated coupled vibration signals.

1) Model of Finger Tapping Events: First, we need to define
specific tapping gestures that can be applied within our sensing
framework. These gestures need to have the following two key
properties. (1) The set of gestures can be differentiated by wrist
tapping; (2) These gestures align with the user’s habitual behav-
ior. Our observations and research indicate a standard fingering
pattern when interacting with a keypad. Specifically, the index
finger is used for keys 1, 4, and 7, the middle finger for keys 2,
5, and 8, the ring finger for keys 3, 6, and 9, and the thumb and
little finger are used for function keys based on habit.

This fingering pattern aligns well with our requirements, ne-
cessitating only minor adjustments for applicability. Our gesture
assumes a fixed wrist and keyboard position as depicted in Fig. 1.
Keys 1, 2, 3, and 10 are struck with the index finger, middle
finger, ring finger, and the pad of the little finger, respectively.
Keys 4, 5, 6, and 11 are struck with the index finger, middle
finger, ring finger, and the tip of the little finger, respectively.
Keys 7, 8, and 9 are struck using the nails and fingertips of the
index, middle, and ring fingers, and the 0 key is struck using the
thumb.

It’s worth noting that in this method, we do not need to ask
users to rest their wrists at fixed positions. As long as the height
of the wrist relative to the tapping surface is fixed, we also do
not require the tapping to start from the same initial positions.
The key requirement is that the volunteers should maintain a
fixed tapping posture. Unless otherwise stated, the stability,
distinguishability, and versatility of the method’s signals are sub-
sequently examined in depth according to this general scheme.

2) Stability: First, we ask ourselves if different finger tap
motions cause distinguishable and stable vibration signals. To
ascertain the stability of the vibration signal, we conducted
the following experiment. A volunteer was asked to tap the
same spot with the same finger five consecutive times, with
a few seconds intervals between each tap. The results were
superimposed as shown in Fig. 4. It was observed that the forced
vibration segment of the signal seemed unstable. However, the
relaxing vibration segment produced a stable signal when the
same tapping posture was maintained. This stability can be
attributed to this part of the vibration being less susceptible to
muscle interference.

3) Distinguishability: To confirm that finger tapping at var-
ious locations generates distinguishable differential vibration
signals at the wrist, we conducted an experiment. A volunteer

Fig. 4. Vibration signals from multiple taps at a uniform location. (a) Forced
vibration signal; (b) Relaxing vibration signal.

Fig. 5. Different finger tapping signals. (a) Tap key 4 with the index finger;
(b) Tap key 8 with the middle finger; (c) Pan hand and tap key 4 with the middle
finger; (d) Tap key 5 with the middle finger.

was instructed to execute four consecutive taps at different posi-
tions on a table. The signals were then captured, and the results
are presented in Fig. 5. Fig. 5(a), (b) illustrates the variance
in signals from different fingers tapping at distinct locations.
A review of Fig. 5(a)–(c) reveals that the tapping signals of
different fingers at the same position are distinguishable. Given
that the vibration signals are influenced by the relative positions
of the fingers and the hand, the tapping of the same finger at
different positions also varies, as evidenced by the differences
in Fig. 5(b)–(d). Notably, Fig. 5(c), (d) display the results of a
single finger tapping at different positions, yet the signals exhibit
a strong resemblance. This underscores the fact that the variation
in the vibration signal is dictated by the relative positions of the
fingers and the wrist. In this experiment, there is no stipulation
for the wrist position to remain constant, and individuals will tap
different points within a close range using comparable postures.
It is this similarity in posture that results in the resemblance
between the signals from the two taps.

4) Generalizability: We divide the signal into two parts,
relaxing vibration and forced vibration, and in this experiment,
we need to verify whether increasing the forced vibration signal
will cause the universality of the signal to deteriorate. In this
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Fig. 6. Effect of the coordinates of the forward and backward movement of
the segmented signal on the accuracy of recognition.

experiment, we recruited three volunteers, asked them to rest
their wrists in the designated area, and then tap 10 times at
each position on the keyboard as shown in Fig. 1. Then, we
collected their vibration signals when they tapped at different key
positions. In order to control the variables, we simultaneously
reduced the signal at the end of the relaxing vibration while
increasing the forced vibration signal before the relaxing vibra-
tion. In this way, we can ensure that the length of the signal is the
same, that is, the amount of information is the same. We perform
high-pass filtering on these signals and roughly align them using
cross-correlation [40]. Subsequently, we truncate the signal
and extract its amplitude spectral density (ASD) as a feature
value, and then classify it using a random forest classifier [43].
The average accuracy of 5-fold cross-validation is shown in
Fig. 6.

Initially, we fixed the post-signal interception point to confine
the interception range, with the results indicated as yellow
bars in Fig. 6. It can be observed that the classification effect
is suboptimal at the outset when the signal contains forced
vibration. However, as the interception point shifts, the forced
vibration diminishes and eventually vanishes, leading to the best
classification result. As the interception point continues to shift,
the classification results are optimized. However, as the effective
information (relaxing vibrations) decreases, the classification
results deteriorate.

To eliminate the interference of interception length, we fix the
former segmentation point at the optimal segmentation position
and then use the corresponding size of the interception length to
conduct the experiment, with the results displayed in Fig. 6. At
this stage, the classification results are not significantly affected,
which further validates that the forced vibration in the first half
of the segment has poor generalizability to the signal, while the
relaxing vibration exhibits strong generalizability.

IV. TAPWRISTBAND SYSTEM OVERVIEW

Briefly, we introduce TapWristband, as depicted in Fig. 7.
This system captures the vibrations produced by finger taps
and channels these vibration signals into the tap recognition
framework. This framework subsequently translates the finger
taps on the table into the output from the 12-key keypad. The

tap recognition framework can be divided into five major com-
ponents as follows:
� Pre-processing: The signals acquired by the sensors are

first removed from the background noise, after which
the signals with different dimensions are converted into
a uniform time-domain displacement signal x(t), and
finally narrow-band filtered to facilitate subsequent tap
detection.

� Tap Detection: An energy-based double-threshold sliding
window is used for pre-detection, followed by the use of
decay fitting to determine the occurrence of taps.

� Relaxing Vibration Segmentation: An adaptive correlation
function C(t) is generated using the decay fitting results
and the selected signal s(t), and a cross-correlation algo-
rithm is used to determine the signal segmentation points.

� Feature Extraction: The features of the taps are extracted
from both frequency and time dimensions and feature
selection is performed on them.

� Joint Classifier: Construct a joint classifier to classify and
recognize taps by a weighted combination of several classic
classifiers.

V. METHODOLOGY

In this section, we delve into the characteristics of the coupled
vibrations obtained at the wrist. To validate our model, we
used two sensor systems - PZT and IMU - to collect vibration
data from the wrist. The signals collected by these sensors are
represented as XPZT (t) and AIMU (t), respectively. Following
the pre-processing of the sensor signal, we obtain a vibration
signalx(t) containing coupled vibrations. To capture and dissect
the effective portion of this vibration, we have developed a
sequence of algorithms.

For recognition of taps, it is necessary to monitor x(t) for
occurrences and intercept them. In general, time-window-based
energy monitoring is a commonly used method because the
vibration at the wrist is a bursty finite energy signal. But there
exist several challenges in accurately identifying the tapping
event within the x(t) signal:
� The duration of the tapping event is unpredictable: While

the timing of the relaxing vibration is generally stable,
it frequently interacts with other disturbances, leading
to events of varying lengths. These events typically last
between 0.02 s and 0.2 s [15].

� Tapping events exhibit a high degree of coupling: The tap-
ping action is inherently a dynamic force process, and our
aim is to detect its relaxing vibration component. However,
this component is often enveloped by these interconnected
signals.

� Effects of passive taps: The signal x(t) will encompass
passive vibration signals produced by various situations
such as vibrations from a table, collision sensors, and arm
collisions, in addition to our active tapping signals. These
passive vibration signals bear a high resemblance to our
actual signals, making their elimination through an energy
windowing method very challenging.
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Fig. 7. The Overview of TapWristband framework, which includes five major components: Pre-processing, Tap Detection, Relaxing Vibration Segmentation,
Feature Extraction and Joint Classifier. The image in the upper right corner indicates the keypad used to indicate where to tap.

To tackle the aforementioned challenges, we carry out data
pre-processing and standardize the signals from various sensors
to ensure that the subsequent tasks are sensor-independent.
Following this, we ascertain whether a tapping event has oc-
curred, eliminate the impact of false taps, and then execute
decoupling to extract valuable information. This approach offers
two benefits: first, breaking down the problem simplifies each
component and enhances the extraction success rate; second, it
guarantees the system’s real-time performance. We have devised
the entire segmentation process, as illustrated in Fig. 8, to
overcome these challenges and to acquire the data of isolated
relaxing vibrations of the wrist.

A. Pre-Processing

1) Denosing: Since vibration sensors are not sensitive to
high-frequency signals such as ambient noise, our signals are
mainly disrupted by low-frequency noise originating from ac-
tions such as body movements and clothing friction. Fortunately,
such noise is generally below 10 Hz [37], and according to the
a priori information obtained from the tests, our vibration signal
is predominantly within the 100− 300 Hz range. Therefore, for
the data XPZT (t) and AIMU (t) acquired by the sensors, we use
a high pass filter with a cutoff frequency of 20 Hz to eliminate
the random noise introduced by the environment.

2) Transform: The operating principle of PZT is based on
the piezoelectric effect. When vibration occurs, the PZT sheet
undergoes deformation, generating a signal XPZT (t) that signi-
fies the displacement x(t). The signal AIMU (t), obtained by the
IMU during vibration, denotes the acceleration a(t). Due to the
IMU and PZT vibration sensor principles are based on the spring
oscillator principle,a(t) can be transposed to displacement using
the equation:

x(t) =

∫ (∫
a(t)dt+ v0

)
dt+ s0

where x(t) represents the displacement at time t, a(t) =
Ao

IMU (t) signifies the acceleration at time t, v0 is the initial
velocity, and s0 is the initial displacement. In this study, we

Fig. 8. Framework of Precision Tapping Event Extraction, which consists of
three main parts, Pre-processing for denoising and unifying the signals from
different sensors, Tap Detection for monitoring and localizing the occurrence of
events, and Relaxing Vibration Segmentation for intercepting the valid signals
out.

assume both the initial velocity v0 and initial displacement s0
to be 0, and the transformed signal is denoted as Xo

IMU (t).
3) Filtering: Since PZT directly obtains the displacement

signal thus we used PZT to acquire these typical passive knock-
ing noise signals X(t)PZT (t) as shown in Fig. 9. The sampling
rate of the PZT setting is 860Hz.

According to the description above, the noise generated by
sudden shocks to the sensors was the most disturbing for us.
During the experiment, we encountered several types of typical
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Fig. 9. Distribution of different types of noise in the time domain. (a) Slapping on the arm; (b) Hitting the body; (c) Knocking on the table; (d) Collision directly
on the sensor; (e) Normal tap.

noise signals as shown in Fig. 9. These signals were generated by
slapping on the volunteer’s arm, hitting the volunteer’s body by
other people or objects, knocking on the desktop, and collision
directly on the sensor, respectively. Since PZT directly obtains
the displacement signal thus we used PZT to acquire these
typical passive knocking noise signals X(t)PZT (t) as shown in
Fig. 9. The sampling rate of the PZT setting is 860Hz. For these
signals generated by human vibration and direct impacts on the
sensors, there is a significant frequency difference between them
due to their different propagation paths. Given the Butterworth
filter’s advantage of a flat frequency response in the passband,
which results in less distortion and minimal signal impact, we
employ this filter to eliminate this portion of the burst signal in
this experiment. We convert it into a digital bandpass filter using
the bilinear transformation. We set its pass and cutoff frequencies
to 150Hz and 280Hz, represented by Wc and Wp, respectively.
The filtered outcomes of the two sensor signals can be combined
and denoted as X(t). Our filter can achieve approximately a
15dB improvement in the signal-to-noise ratio. An additional
benefit of employing this narrow-band filter is that it eliminates
intricate details from the vibrations, thereby facilitating a more
precise fitting in subsequent decay fitting.

B. Tap Detection

To identify the occurrence of the tapping event and approx-
imately ascertain its location, we have devised the detection
process, as shown in Fig. 8. For complete detection of tapping
actions, the algorithm (refer to Algorithm 1) given in this section
is based on a sliding window, which contains two modules,
respectively. These two modules, Energy Window and Decay
Fitting, are elaborated upon in the subsequent sections.

1) Energy Window: Tapping generates a burst signal, and the
energy window serves as an effective event detection method,
despite its inability to decouple the free vibration of the tap. Let’s
assume that L represents the target event width, t is the time of
the signal under detection, and X(t) is the signal corresponding
to the time t. E0 and σ are the average energy of the signal and
the standard deviation of the signal energy, respectively, obtained
a priori. Subsequently, we devise an energy window algorithm
based on double pointers, which encompasses the following four
primary steps.

First, compute the average energy within the time win-
dow [i, i+ L], represented by Ew. This can be formulated as

follows:

Ew =
1

2

L∑
t=1

X(t)2

L

Second, if Ew > E0 − rσ, we regard the time of the most
recent high-energy occurrence, recorded by Peak0, as the
potential starting point for a peak. Here, E0 and σ represent the
mean and variance of the tap signals obtained from the training
dataset, respectively. Additionally, r is a constant whose value
is determined by the proportion of false taps in the signal, which
is typically low, leading to r assuming a value of 2.

Third, given that the energy triggered by a tapping event
should not be excessively high, we classify the event as false tap-
ping noise and set flag_high to ’False’ when Ew > E0 + pσ.
Here, p is a constant whose value is contingent on the quantity
and intensity of high-energy false taps in the signal. To guarantee
the detection of as many events as possible by the decay fit, p is
typically set to 3.

Finally, if Ew < E0 − r/σ indicates the end of a burst,
it is then detected by a decay fitting if the event duration
i− Peak0 meets the input conditions and the event’s energy is
not overly high. The signal that successfully passes the detection
is recorded in S. Subsequently, flag_high and Peak0 are
updated to serve as initial values for the forthcoming round of
event detection.

2) Decay Fitting: To precisely determine the occurrence of
an event, it’s essential to detect the relaxing vibration segment.
Relaxing vibration is a process where the energy decays from
its peak, and false tap signals exhibit a different energy decay
pattern compared to real taps due to the differing vibration
processes. As shown in Fig. 10 (Fig. 10 in the new manuscript),
Fig. 10(a) represents the original signal. This signal needs to
be converted into an energy profile and then fitted to its enve-
lope. The fitting result is shown in Fig. 10(b). To identify the
energy decay in the coupled signal, we fit the intercepted signal
ES(t) = s(t)2 in segments using the energy decay function,
which is responsible for forming the damped vibration. This
can be expressed as follows,

Ef (t) = Ae−ζωnt (4)

where A is the amplitude, ζ is the damping ratio, and ωn is the
natural frequency. This formula describes the decay of energy
in a damped oscillation over time.
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Fig. 10. Raw signal after filtering and fading fitting. (a) Raw signal; (b) Fading
fitting result.

Algorithm 1: Tap Detection Algorithm.

Input: X(t): Time domain signal after denoising
L: length of windows. E: average energy
σ: standard deviation of energy

Output: S: Set of signal sigments that contains the tap
event

1: Peak0 ← 0; flag_high← True; S ← {};
2: for i in t do
3: calculate the energy Ew of [i, i+ L]
4: if Ew > E0 − rσ then
5: Peak0 ← i
6: if Ew > E0 + pσ then
7: flag_high← False
8: end if
9: else

10: if L < (i− Peak0) < 2L&&flag_high then
11: s(t)← X[Peak0 : i+ L]
12: Fading Fit Detection for s(t)
13: Add event s(t) to collection S
14: end if
15: flag_high← True
16: Peak0 ← i
17: end if
18: end for
19: return R

It’s noteworthy that the coupled vibration is composed of
two parts: the local vibration and the other is the vibration by
propagation. While the vibrations transmitted through different
tissues convey crucial structural information, the local vibrations
are significantly more energetic than the propagated vibrations
in terms of energy. This allows us to utilize this more stable
segment for fitting to identify the occurrence of a tapping event,
which is why we opted for a filter with a narrower passband in
the preceding filtering phase. We employ the mean square error
(MSE) and the mean absolute error (MAE) as a loss function to
measure the discrepancy between the attenuation of the vibration
signal and the anticipated value, which can be articulated as
follows:

Loss_MSE =
1

n

n∑
i=1

(
X(i)2 − Ef (i)

)2

Loss_MAE =
1

n

n∑
i=1

∣∣X(i)2 − Ef (i)
∣∣

where n represents the total number of samples, and Ef (i) is
the value obtained from the fitting process. The MSE is highly
sensitive to errors, while the MAE is more susceptible to outliers.
During our analysis, we fit the segments of s(t) using σ_MSE
and σ_MAE as thresholds for MSE and MAE, respectively. If
any segment exhibits an MSE or MAE below these thresholds,
we interpret this as the occurrence of a tap event in s(t). To ensure
accuracy, we perform a stepwise fitting over the signal s(t),
maintaining a constant length. We then fit the interval that yields
the minimum value of Loss = Loss_MSE + Loss_MAE,
which corresponds to the position of the tap event.

C. Relaxing Vibration Segmentation

All signals recognized as tapping events are captured and
included in the set S. The relaxing vibration signal, which is
essential for these events, is often mixed with various distur-
bances and needs to be isolated.

Interestingly, during the relaxing vibration time, there is no
interference from other hand vibrations. This means that the
interfering signals within the relaxing vibration signal can be
distinguished on the time axis. This observation is significant
as it implies that our decoupling process can be viewed as a
more refined segmentation, specifically, identifying the start of
the relaxing vibration signal. To localize within a signal, signal
correlation is a commonly used method [40]. In the subsequent
sections, we will elaborate on the cross-correlation functions
and methods developed in this study.

Cross-correlating Function: Cross-correlation is a measure of
similarity between two signals as a function of the displacement
of one relative to the other. The equation for calculating the
cross-correlation of two discrete signals, x(t) and C(t), can be
represented as follows,

RxC(t) =

+∞∑
n=−∞

x(t) · C∗(n− t) (5)

where x(t) and C(t) represent two discrete-time signals.
C∗(n− t) is the complex conjugate of C(t), which is delayed
by k time units. RxC(t) denotes the cross-correlation result.

The outcome, RxC(t), reflects the similarity between the
correlation function and the signal under measurement. In other
words, if the fixed portion of the signal under measurement
closely resembles the correlation function, we can pinpoint the
exact location of the relaxing signal via the peak of RxC(t),
thereby extracting the necessary information. However, we can-
not predict the tap signal to establish the correlation function of
the response.

Fortunately, the coupled signal we require is made up of two
components: the localized relaxing vibration and the propagat-
ing relaxing vibration. The localized relaxing vibration takes
place first and is precisely located at the termination of the
forced motion. Due to the high energy of the localized relaxing
vibrations, the impact of the propagating relaxing vibrations
can be overlooked in the cross-correlation. As a result, we can
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Fig. 11. Cross-correlation results and Gaussian fitting results, where the green
dotted line represents the location of the identified segmentation.

pinpoint the location of the signal segmentation by selecting the
correlation function solely for the localized relaxing vibrations.

In the preceding section, we used decay to fit the local vi-
brations. The outcome of this fitting process can be utilized to
reconstruct a correlation function for cross-correlation. Accord-
ing the fitting (4), we derived A and ζωn. To individually obtain
the values of ζ andωn, we input the signal s(t) into (3) to acquire
its energy spectrum. The highest part of the energy spectrum is
deemed to be the frequency of the local signal, which is ωn.
These parameters are then input into (1) to reconstruct the local
signal, denoted asC(t). This is also our cross-correlation signal.
It’s important to note that the reconstructed local signal is not
dependent on volunteers. The reconstructed signal is achieved
by fitting a correlation function that can be adaptively adjusted
for different users.

Precise Extraction: To optimize the correlation between the
signal s(t) and the correlation function C(t), we configure
the filter based on the frequency range of the cross-correlation
function C(t) and apply it to the signal to be measured, s(t).
The result of this filtering process is denoted as sMF (t). By
introducing this signal sMF (t) and the correlation functionC(t)
into (5), we obtain the cross-correlation spectrum of the signal, as
shown in Fig. 11. The trajectory of the correlation function C(t)
is represented by the blue dashed line transitioning to the blue
solid line in Fig. 11(a), and the correlation result at each position
is the vertical coordinate of the corresponding point in Fig. 11(b).
Given that the fluctuating noise of the signal adheres to a normal
distribution, we fit a Gaussian to the result, which is represented
by the red line in Fig. 11(b). The horizontal coordinate at the
peak of the fitting result, X0, is considered the location of
the strongest correlation between the two signals. According
to Fig. 11, the split point can be calculated as X0 + t0. The
signal following this split point, which represents the relaxing
vibration, is required for tapping position recognition.

D. Feature Extraction

1) Fundamental Feature: Due to the dispersive characteris-
tics of vibration signals, vibrations induced by tapping at various
locations may exhibit distinct spectra. The amplitude spectral
density (ASD) is typically employed as a fundamental feature

of the frequency response for vibration signals [8], which can be
directly obtained from segmented signals. However, the arrival
time of different frequencies at the sensor can vary [42]. Since
ASD cannot depict the temporal distribution of vibrations, we
utilize the correlation spectrum (CD) as the primary character-
istic of the time-domain feature.

For the segmented vibration signals that have been extracted,
the ASD and CD can be readily derived as mentioned above.
However, it is important to note that the uniqueness of features
can be influenced differently by various frequency bands. Cer-
tain frequency points exhibit significant variations, even when
the tapping position remains constant. These are referred to as
unstable frequency points and can hinder the accurate charac-
terization of the tapping position. Conversely, there are retarded
frequency points that show minimal change when tapped at
different locations. For optimal tap recognition, it is crucial to
minimize the impact of these influential frequency points as
much as possible.

2) Data Augmentation: Despite the transducer’s sampling
rate encompassing the entire signal interval, the frequency re-
sponse can be significantly impacted by jump points induced by
random noise. This results in an increase in unstable frequency
points and retarded frequency points. To mitigate this effect, it
becomes necessary to thicken the data via interpolation. Cubic
spline [20] interpolation generates an interpolation function with
consecutive first- and second-order derivatives at each data point,
which ensures the smoothness of the interpolation curve. This
avoids problems that may occur when using a global interpolat-
ing function, such as the Lunge phenomenon.

3) Feature Selection: Most feature selection methods focus
on finding the smallest optimal subset based on classification
accuracy. However, the limited accuracy of a particular model
is not sufficient to confirm that a feature is irrelevant. Therefore,
we employ the Boruta [45] algorithm to identify all relevant
classification features. The algorithm relies on a computationally
efficient random forest classifier to iteratively discard less rele-
vant features. After feature selection, the feature vector initially
consisted of 402 features, which were later reduced to 162 and
fed into our classification model.

E. Joint Classifier

We used the following predictive models, all of which have
shown excellent performance in classification recognition:
� Support Vector Machine (SVM): it is a statistical learning

method with a linear kernel that determines the optimal
hyperplane to classify the categories by maximizing the
interval between the nearest points.

� Random Forest (RF): it fits a specific decision tree classifier
on subsamples and uses averaging to reduce overfitting.
We set the estimate to 200 and use the entropy criterion for
prediction.

� Linear Discriminant Analysis (LDA): it creates linear de-
cision boundaries to separate classes by utilizing Bayes’
rule and approximating the class-conditional density of the
samples. We choose singular value decomposition as the
solver.
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Fig. 12. Platform for experiments: (a) Raspberry Pi 4B; (b) ADS 1115;
(c) Sampling circuit; (d) PZT-5H-Single; (e) IMU sensor JY931.

� K-Nearest Neighbors (KNN): it determines the category of
a sample by unknown the k nearest neighbors of the sample
at a time after mapping the sample into an n-dimensional
space.

According to our empirical analysis, RF is best suited for
classification, followed by LDA and SVM. Therefore, we assign
different weights to different classifiers (SVM, RF, LDA, KNN)
to further improve the classification accuracy.

VI. IMPLEMENTATION

In this section, we describe the implementation of TapWrist-
band in terms of system framework, hardware design, and ar-
chitectural optimization, respectively.

A. System Framework

The framework of our system implementation is divided into
two parts, one part is the sensor system as a signal acquisition
module and the other part is the processor deploying this tap
recognition framework. The tap recognition framework is de-
ployed on the Raspberry Pi 4B platform. The signal acquisition
module uses two different sensor schemes to collect data from
the wrist. The first scheme uses a PZT with a diameter of 1.5
cm to collect data. The signal from the PZT (PZT-5H-Single) is
converted to a digital signal by an analog-to-digital converter
(ADS 1115). The digital signal is then amplified four times
using a programmable gain amplifier (PGA) integrated into
the analog-to-digital converter. Another method is to use an
IMU sensor (JY931), which can be directly connected to the
Raspberry Pi 4B platform due to its built-in data acquisition
circuitry and analog-to-digital conversion function, as shown in
Fig. 12. In order to ensure that there is no loss of information, we
set the sampling rate of ADS1115 to 860 times per second, and
the sampling rate of JY931 to 1000 times per second, according
to the sampling theorem. For the sake of portability and mobility,
the whole data acquisition is carried out on Raspberry Pi.

B. Hardware Design

Given the properties of the PZT, when the wrist vibrates due
to finger movements, the PZT worn on the wrist undergoes de-
formation due to pressure. Consequently, positive and negative
charges emerge on its two opposing surfaces, indicating that

Fig. 13. Data Acquisition Circuit, where sampling circuit is used to collect
the voltage signal from the vibration and the DC bias circuit is used to change
the interval of the voltage signal.

the PZT is charging. Conversely, when the pressure dissipates
or the two surfaces connect, the charge vanishes. Hence, the
PZT can be viewed as a capacitor. When linked to a resistor, we
obtain an RC circuit, enabling the conversion of the vibration
into an electrical signal that can be measured. The design of
the RC circuit is crucial for enhancing the quality of signal.
The circuit utilized in our TapWristband is shown in Fig. 13.
First, the resistance to the time constant of the sampling circuit
τ = RC is considered. The R1 in the sampling circuit shouldn’t
be excessively large or small, as a high resistance impacts the
voltage’s rate of change, while a small resistance significantly
reduces the sampling time, leading to distortion. In our practical
system, R1 is set to 1MΩ . Second, the PZT may generate a
negative voltage when it vibrates with the wrist. However, most
ADCs are incapable of sampling negative voltages. To address
this issue, we incorporate a DC bias circuit into the hardware
system, as illustrated in Fig. 13.

C. Architectural Optimization

In our implementation, we employ a parallel structure for the
acquisition and read processes. To ensure efficient operation on
the chip, we extract only the signals within the window function
for processing during the reading process. By maintaining two
queues in the task to store the addresses of the extraction points
on the streaming data, we can utilize shorter window functions
to further enhance the operation speed without the need for a
large amount of data.

Moreover, the temporal precision of the acquired signal influ-
ences the frequency accuracy and, consequently, the acquisition
results. Given that the temporal stability of the acquired data is
impacted by the reading, we stabilize the data sampling time.
Our data is adjusted for time errors using an independent timer.

VII. EXPERIMENT AND EVALUATION

TapWristband is a potent and user-friendly system, making
the assessment of its performance and reliability crucial. We
initiate this process by detailing the experimental setup and
proceeding with the system evaluation. As our work tackles a
distinct problem compared to other related studies, we conduct
a systematic evaluation of the system, focusing on aspects such
as accuracy, keystroke rate, and robustness.
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Fig. 14. Experimental results with different sensors.

A. Experimental Setup

We enroll a group of 17 volunteers, including 3 females, aged
between 22 and 54, from our school. To validate the fundamental
performance of TapWristband, all participants were asked to
wear it on their right wrists. Our primary experiments were
carried out in a typical indoor setting with ambient noise levels
below 50dB. Participants were instructed to position their wrists
over a table where a piece of paper, featuring a drawn keypad
(as shown in Fig. 1), was placed. They were then asked to tap
each key on the paper 10 times. We conducted three rounds of
experiments in total, with a minimum interval of 1 h between
each tapping session. After denoising and segmenting all signals,
we obtained a total of over 8500 taps (30 taps per key per person)
for training and testing. Among them, there are about 6000 sets
of signals based on IMU sensors, and about 2500 sets of signals
based on PZT sensors. To evaluate the robustness of our system
and its performance under rapid tapping, some participants were
asked to conduct supplementary experiments under different
experimental conditions, which will be detailed in the following
sections. All experiments commenced with the default settings
unless otherwise specified.

B. Recognition Accuracy

In this section, we will discuss the basic performance of Tap-
Wristband, including its accuracy and error rate in recognizing
different keystrokes. We also evaluate the impact of different
sensors and each module of TapWristband on the experimental
results.

1) Classification Accuracy: To evaluate the adaptability of
the TapWristband’s key recognition framework to various vi-
bration sensors, we conducted experiments using two different
sensors (IMU and PZT). As mentioned above, the data we
collected contains about 5000 sets of data from 7 volunteers,
half of which are from IMU sensors and half from PZT sensors.
We divided them into two datasets according to the type of
sensor, each with about 2500 sets of data. We used the model
introduced in Section V to train and test these two datasets
separately. The results of 10-fold cross-validation for the two
datasets are shown in Fig. 14. The ‘Accuracy’ in Fig. 14 refers
to the ratio of correctly identified samples to total samples,
and ‘equal error rate (EER)’ refers to the ratio of incorrectly
identified samples to total samples. The average recognition
accuracy of the two groups of sensors is shown in Fig. 14. The

results show that regardless of the type of sensor, the average
recognition accuracy can exceed 90%. These results strongly
prove that the recognition framework we proposed has broad
applicability. We observe that the recognition accuracy is higher
when using IMU, because the integration of IMU sensors is
better,which makes the perception results more stable.

2) Effect of Sensor Position: In practical operations, we often
encounter situations where the sensor position drifts and is not
in the position we set. To investigate the tap recognition results
when the sensors were in different positions, we conducted the
following experiments. First, we placed the sensor at 5 positions
as shown in Fig. 15(a), with a gap of 0.5cm between adjacent
positions. Then we asked two participants (2 of the 7 volunteers)
to press each key 10 times with different sensors, a total of 2 sets
of 240 datasets as the test set. We used the model trained in the
previous experiment to test these two test sets, and the final
results of the average accuracy and KRR (key recognition rate)
are shown in Fig. 15(b) and (c). The accuracy is the proportion
of correctly identified keys to valid signals, and KRR represents
the proportion of those recognized as a key to the total number
of taps.

From the results, it can be seen that both PZT and IMU
sensors need to ensure that the sensor is as far as possible in
the mid-axis of the wrist, which will better ensure recognition.
When the sensor is too close to the wrist, the sensor receives more
interference from the raising and lowering of the wrist, resulting
in a lower recognition rate and ultimately, accuracy. When the
sensor is far away from the wrist, the signal attenuation is larger,
which also leads to larger errors. In addition, a side-by-side
comparison of the PZT and IMU sensors shows that the PZT
is less effective due to the shape of the sensor, which does not
ensure stable coupling. This is one of the reasons why the overall
results for the PZT are slightly worse than the IMU in Fig. 15.
Due to this advantage of IMUs, we followed up with experiments
mainly using IMU sensors.

3) Confusion Matrix: To further evaluate the intrinsic perfor-
mance of TapWristband, as mentioned in the previous question,
we collected a total of about 6000 sets of data from 17 volunteers.
We used 5000 of these as a training set and 1000 as a test
set for validation. The confusion matrix in Fig. 16 shows the
recognition accuracy of these participants. Our research results
show that the recognition rate for each key exceeds 88%, with
an average accuracy of over 93%. The confusion matrix further
indicates that the discrimination ability of vertical keys is su-
perior to that of horizontal keys, a phenomenon attributable to
the significant structural difference between the fingertip and
the finger belly. Given that the problem we proposed is different
from the problems solved by existing research, we chose to use
the aforementioned results as the baseline for the next evaluation.
After training the model, it was used in subsequent experiments.

4) Effect of Tapping Position: A notable feature of our Tap-
Wristband is that the tapping is not affected by specific keyboard
positions. To explore this feature, we conducted the following
experiment: In the model trained in the previous section, we
asked 2 subjects to tap 10 times at different positions on the
keyboard with each finger according to the trained actions, and
record the keys represented by their actions. It is important to
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Fig. 15. Effect of different sensor wearing positions. (a) Schematic of different sensor wearing positions. (b) Effect of different sensor wearing positions on PZT
sensors. (c) Effect of different sensor wearing positions on IMU sensors.

Fig. 16. Confusion matrix of 12 keys, the x-axis represents the actual
keystrokes and the y-axis represents the output of TapWristband.

Fig. 17. Relatively stable gesture results for clicks at different key positions.

note that the subject’s seat remains fixed while tapping, the
keyboard is panned across the desktop, and the relative position
required for each key is maintained as the key is tapped (e.g.,
the key 2 is tapped using the belly of the middle finger). We
obtained 240 sets of data as a test set, and the average accuracy
results after multiple taps are shown in Fig. 17. The results in the
figure verify that TapWristband has the ability to input flexibly
without restrictions.

5) Bandwidth of Filter: Since a narrowband filter is used
for signal shaping in the decay fitting process of Algorithm 1.
Therefore, we investigated the effect of filter bandwidth on the
Accuracy and signal recognition rate. We define ’effectiveness’

Fig. 18. Effect of energy window width L on accuracy and TPM.

Fig. 19. Effect of rapid tapping on accuracy and EER.

as the ratio of the number of signals recognized as tap to the total
number of signals. When the bandwidth of the filter is too narrow,
it ensures the relative purity of the signal but also removes the
effective information. This results in some noise being forced
to be filtered out as valid information, which ultimately leads to
low accuracy.

Of course, a filter with too wide a bandwidth will result in
events that cannot be effectively filtered and thus valid events
that are perturbed by noise cannot be accurately extracted, as
shown in Fig. 20.

6) Ablation Experiments: Subsequently, we carried out ab-
lation experiments to examine the importance of various designs
in both event recognition and keystroke extraction. As depicted
in Fig. 21 B, the average accuracy rate of recognition is presented
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Fig. 20. Ablation Experiment, where A represents the result of no decay
fitting and precise extraction. B represents the result of no precise extraction. C
represents the baseline.

Fig. 21. Effect of Butterworth filter bandwidth on Accuracy and Effectiveness.

after the removal of the precise extraction module based on mu-
tual correlation. The lack of precise segmentation of the signal
results in the mixing of forced vibrations, causing significant
disruption to the recognition process. Fig. 21 A illustrates the
scenario when the fading monitoring is removed on top of B.
This leads to incomplete filtering of events and the introduction
of noise into the dataset, resulting in substantial interference.

C. Rapid Tapping

Input efficiency is a crucial metric in the assessment of an
HCI system. In this subsection, we delve into the primary
elements influencing the recognition speed of TapWristband.
Additionally, we evaluate the impact of rapid tapping on the
accuracy of TapWristband.

1) Segment Evaluation: We conducted a study to evaluate
the impact of the segmentation window lengthL on the system’s
accuracy and maximum input efficiency. We used the data and
model from Section VII-B3) for this experiment, incrementing
L from 30 to 140 and calculating the system’s average accuracy
of the system at each increment. The research results are shown
in Fig. 18. These results indicate that a window that is too short
will result in the loss of some signal information. In addition,
a window that is too long will introduce additional noise to the
system, and the number of taps per minute (TPM) is inversely
proportional to the window length. Therefore, unless otherwise
specified, we set L = 80 for all subsequent research based on
the above conclusions.

2) Tap Speed Influence: Rapid tapping can lead to inevitable
muscle tension, which affects the system’s recognition accuracy.
To verify the rapid capability of TapWristband and its profi-
ciency in handling high-efficiency, large-capacity tapping tasks,
we conducted experiments on two volunteers. A metronome was

Fig. 22. Effect of Firmness of the table on accuracy and EER.

used in the experiment to synchronize the tapping rhythm of the
volunteers’ fingers with the rhythm of the metronome, striking
about 1 time per beat points with a total of about 100 taps at a
fixed rhythm. The experimental results are shown in Fig. 19 of
the novice manuscript, with the system’s accuracy decreasing as
the number of finger taps per minute increases. Fig. 18 shows that
although the volunteers’ tapping speed is significantly lower than
the theoretical maximum speed, continuous forced movement
still affects relaxing vibration.

Among the volunteers who participated in the experiment,
their typing speed is approximately 120-200 characters per
minute. In this survey, they reported that when using our tech-
nology for continuous typing, the highest tapping speed remains
at 120-140 times per minute. As shown in Fig. 19 of the novice
manuscript, even if tapping 150 times per minute, the system’s
evaluated accuracy is close to 90%. It can be seen that although
our technology may limit some people who type very fast on
traditional keyboards, it can meet the input needs of medium
speed.

D. Robustness

In this subsection, we investigate the robustness of TapWrist-
band under some real disturbances, including ambient noise,
vibration, and so on.

1) Firmness of the Table: We tested the impact of the hard-
ness of the table on the final recognition accuracy. Using the
previous model, we asked two volunteers to tap each key ten
times on each different surface of the table as a test set. The
results are shown in Fig. 22. Here, 1 represents a stone desktop,
2 represents a wooden desktop, 3 represents a desktop with a
soft pad, and 4 represents a false point press. It can be seen that
our technology has certain requirements for the hardness of the
desktop, and the performance is not ideal when the tapping is
on a void point or on a soft desktop.

2) Environmental Noise Influence: We wanted to explore
whether TapWristband would still work for the noise environ-
ment. To do this, we first investigated the accuracy of Tap-
Wristband in the presence of varying levels of ambient noise.
In this experiment, we recruited three volunteers and let them
tap each key 10 times under different ambient noises. The
classification model was used as mentioned above, which was
trained in advance. As can be seen from Fig. 23, the accuracy
of TapWristband decreases not very significantly as the external
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Fig. 23. Effect of ambient sound on accuracy and EER.

Fig. 24. Effect of desktop vibration on accuracy and EER.

sound continues to amplify, indicating that TapWristband has
strong robustness in terms of sound.

Since TapWristband mainly detects the vibration of the wrist
to recognize the keystrokes, we further investigated the effect
of desktop vibration on the accuracy of TapWristband. We set
up some scenarios that can be seen in daily life in terms of
vibration, and the other experimental settings are consistent with
the above. We classify the vibration generated by the desktop in
daily life into four levels, the first level is the vibration generated
by the friction of the body and clothes in daily life; the second
level is the vibration generated by some desktop daily products,
such as laptops, fans, and mainframes; the third level is a kind
of sudden vibration, such as vibration generated by cell phone
calls, alarm clock vibration, and so on; the fourth level is the
vibration generated by daily vibration that can cause discomfort
to the human being such as someone knocking or kicking the
table.

The results are shown in Fig. 24, it can be seen that at the first
and second vibration levels, the recognition accuracy is main-
tained at more than 90% correct although there is a decrease. As
the vibration is strengthened, the accuracy of TapWristband de-
creases rapidly, and the EER rises rapidly. However, this strong
vibration is short-lived, so it can be said that TapWristband is
robust to vibration in everyday situations.

3) Long-Term Performance: As a system dedicated to pro-
viding a simple and convenient user experience, TapWristband
aims to evaluate the long-term performance of users in the
absence of keyboard prompts. To this end, we have integrated the
data of a long-term user into the data model of several existing
participants.

This long-term user did not use the paper required for the
experiment, but randomly clicked each key about 10 times. After

TABLE II
PERFORMANCE OF LONG-TERM LEARNING

TABLE III
SURVEY OF USERS

a few hours, we asked the user to tap again, and conducted three
sets of experiments every day for the next five days. After de-
noising and segmentation, we selected more than 1400 keys for
training and testing. We used a 10-fold stratified cross-validation
method for evaluation.

The tap recognition results of this long-term user are shown in
Table II. In less than a week, the participant was already able to
use TapWristband quite well. To further evaluate its long-term
performance, we deliberately extended the usage time, and then
conducted experiments after one month, three months, and six
months, the results of which are shown in Table II. These results
clearly show that TapWristband has good durability in long-term
use. Furthermore, we shuffled the six-month data of the subjects
into the models of the aforementioned seven individuals, con-
ducted a 10-fold cross-validation, and ultimately achieved an
average accuracy rate of over 92%. This gives us confidence
to continue to optimize and improve TapWristband to meet the
long-term usage needs of users.

VIII. DISCUSSION

In this section, we discussed the design objectives of Tap-
Wristband, user research, energy consumption, outlook on inte-
grated applications, and future work.

A. User Study

One of the main objectives of TapWristband is to achieve
universal applicability and user-friendliness. To realize this goal,
we proactively collect user feedback after they have used it. This
feedback mechanism allows us to better understand the needs
and expectations of the users, thereby improving our technology.

In our research, we conducted a comparative study involving
17 participants, where we evaluated the features of TapWrist-
band against the touchscreen gesture control and typing func-
tionalities of a smartwatch, as shown in Table III. The majority
of participants expressed a preference for the comfort provided
by the gesture controls and the use of TapWristband, while the
typing feature received mixed feedback. When assessing input
efficiency, TapWristband emerged as the most efficient, followed
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by typing, with gesture control being the least efficient. Partici-
pants generally expressed a positive attitude towards learning to
use these three features. However, a subset of participants noted
that training for TapWristband was more time-intensive.

Regarding the issue reported by some users about the training
portion being somewhat slow, this is very important feedback.
We will take it into consideration in future versions to enhance
the efficiency and effectiveness of the training.

B. Power Optimization

For a system powered by batteries, energy consumption is
an important issue. Currently, the energy consumption of the
whole system consists of several main components classified
according to the system architecture: power consumed by the
sensors, power consumed by the analogue-to-digital converter,
and power consumed by the processor. The energy consumption
of sensing and acquisition is highly related to the data return rate,
and the frequency of acquisition in our system is not high. The
processor’s energy consumption mainly depends on the number
of operations. In this case, optimizing the inference method
could significantly improve energy efficiency.

Incorporating a hibernation mechanism is a simple and ef-
fective way to save energy, in addition to using devices and
methods that consume less energy. This involves turning the
system on while in use and letting it hibernate when not in use.
We can work with the chip’s hibernation feature to wake up the
system by using vibration as a trigger. It is worth noting that the
PZT sensor, as a passive device, provides a great advantage by
allowing the system to remain in a low-power state as much as
possible. In our future work, we will explore battery optimization
techniques from the points mentioned above.

C. Integration and Application

The TapWristband framework, defined by two main compo-
nents - the sensor above the wrist and the hard object below
the hand, can be easily integrated into many different systems.
We divide the integration of TapWristband with existing devices
into two categories, signalling and command transmission. For
wrist devices such as smartwatches, TapWristband can be easily
integrated into them by simply reusing the framework described
in the content of this paper to develop the app and configure the
responsive sensors in the system. The framework in this paper
does not limit the output of signals, and thus the system can be
used to do whatever the user wants to do with it, whether it is for
keying in information, controlling the system, or shortcutting
commands. For other smart devices, as we are currently doing,
a bracelet can be configured to deploy the aforementioned ap-
plication and sensors, enabling it to be used as a keyboard. This
keyboard can be linked to the smart device in any way needed,
such as Bluetooth, USB, and other protocols.

D. Future Work

In our future work, we plan to continue to explore our system,
including investigating a variety of sensors and the effect of the
sensor sampling rate on the system. We also plan to explore the

possibility of using multiple vibration sensors, e.g., IMU and
PZT sensors at the same time. We believe that by integrating
data from IMU and PZT sensors, we can further improve the
performance of our system. This multi-sensor approach can
provide more useful information, helping us to identify and
interpret user taps more accurately.

In addition, we plan to collect more user data to further opti-
mize and expand our model. By using techniques including but
not limited to transfer learning and incremental learning, we aim
to improve the efficiency of our system and the user experience,
enabling new users to start using the system immediately without
waiting for model training to complete.

In summary, the future work mentioned above can lead to
improvements making our TapWristband system more in line
with user needs and playing an important role in the field of
human-computer interaction.

IX. CONCLUSION

In this study, we propose TapWristband, a system that uses
vibration sensors on wearable devices to detect and classify
finger tapping, thereby enabling text input on any surface and
effectively realizing a virtual keypad. We perform real-world
experiments to collect measurements for modeling the effects
of the finger-tapping motion on wearable wristband sensors. We
develop pre-processing, tap detection, vibration segmentation,
feature extraction, and classification algorithms to recognize the
tapping patterns of five fingers across twelve key locations of a
keypad system. Finally, we performed extensive experiments
with thirteen participants to evaluate our system. Our exper-
imental results demonstrate that the system is accurate (with
an accuracy rate exceeding 93%), dependable, and efficient in
practical applications. It can be seamlessly incorporated into
various smart wristbands at low cost. Our initial findings suggest
that TapWristband has significant potential in using wearable
IoT sensors for HCI applications.
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