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Abstract—Radio frequency sensors can penetrate non-metal ob-
jects and provide complementary information to vision sensors for
person identification (PID) purposes. However, there is a lack of
research on millimeter wave (mmWave) radar for PID under occlu-
sions, particularly in addressing the open-set recognition problem.
Thus, we propose an open-set occluded PID (OSO-PID) framework
that can deal with various obstacle and occlusion scenarios with
open-set recognition capability. We first introduce a new dataset,
mmWave-ocPID, comprising mmWave radar measurements and
RGB-depth images, collected from 23 human subjects. We next
design a novel neural network, mm-PIDNet, for occluded person
identification using mmWave radar measurements. mm-PIDNet
incorporates a transformer encoder, a bidirectional long short-
term memory module, and a novel supervised contrastive learning
module to improve PID performance. For open-set recognition,
we enhance the mmWave radar-based PID method by integrating
supervised contrastive learning with the Weibull models, which can
identify out-of-distribution samples. We perform extensive indoor
experiments with a variety of obstacles and occlusion scenarios.
Our experimental results show that mm-PIDNet achieves an F1-
score of 0.93 on average, outperforming state-of-the-art methods
by up to 13.41% for occluded cases. For open-set PID, the OSO-PID
framework achieves an F1-score above 0.8 when the openness is less
than 14.36%.

Index Terms—Wireless sensing, mmWave radar, person
identification, open-set recognition, contrastive learning.

I. INTRODUCTION

W ITH the widespread adoption of mobile computing
techniques, wireless sensors have been used for vari-

ous human sensing tasks, such as occupancy detection, ges-
ture recognition, vital sign monitoring, etc. [1], [2], [3], [4].
Among these sensing tasks, person identification (PID) aims
to distinguish people based on unique characteristics including
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facial appearance, fingerprints, and gaits. It finds applications
in surveillance, smart facilities, health care, etc. Conventional
vision sensor-based PID approaches assume visibility of the
whole body or identifiable parts [5], [6]. However, in real-world
scenarios such as home and office environments, occlusions are
common, leading to poor performance or complete failure of
vision sensor-based PID methods.

Radio frequency (RF) sensors provide complementary infor-
mation to vision sensors and non-line-of-sight (NLOS) capabil-
ity for PID. Compared with other RF sensors, the millimeter-
wave (mmWave) radar sensor has high portability and sensing
capability due to its short wavelength and large bandwidth [7].
Furthermore, mmWave radar excels in PID under low-light
conditions, adverse weather, and penetrating non-metallic ob-
jects [8], [9], [10], [11]. Thus, recent research studies use
mmWave radar to extract gait, a distinctive walking pattern,
to achieve satisfactory PID performance at a distance without
person cooperation [3], [12], [13]. However, none of the ex-
isting mmWave radar-based works deal with PID under heavy
occlusion scenarios due to the following changes.

First, in occlusion scenarios, obstacles and moving human
individuals produce more complicated, time-varying multipath
propagation of radar signals [14]. In addition to direct reflections
from human subjects, signals with indirect reflection paths are
also captured by the radar [15]. Thus, the mmWave radar signals
have more complicated multipath effects in occluded person
identification scenarios. Second, mmWave signals can be greatly
weakened when passing through an obstacle [16]. This reduces
the number of mmWave signals captured by the radar, leading
to insufficient information for accurate person identification.
Third, data-driven methods require extensive data for training.
However, due to the laborious and time-consuming data collec-
tion process, there is no dataset publicly available for mmWave
radar-based person identification under occluded conditions.

In addition, most existing radar-based PID systems operate
under a closed-set assumption, where the testing data is assumed
to be independently and identically distributed (i.i.d.) as the
training data [17]. However, real-world scenarios often involve
open environments, where unforeseen classes, i.e., individuals,
emerge unexpectedly, significantly reducing the effectiveness
of existing methods [18]. For example, for a closed-set PID
system, there is a risk of incorrectly identifying a home intruder
as a family member, since only data from family members
are collected for training the PID system. To address this is-
sue, we propose to formulate the PID problem as an open-set
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Fig. 1. An overview of the OSO-PID framework, in which a new mmWave
radar PID dataset is built with various occlusion scenarios included to enable
the occluded person sensing and open-set recognition capabilities.

recognition (OSR) task [17], [19], [20]. In OSR, the multi-class
classifier needs to simultaneously classify test samples of the
known classes, and recognize testing samples of the unknown
classes. This allows the model to identify individuals based on
an established individual set, while also effectively rejecting
unknown intruders. While OSR methods have been proposed
for vision-based tasks [21], [22], [23], there exists a research
gap in OSR for mmWave radar-based PID, especially at various
occlusion scenarios.

In this study, we take advantage of the penetration capability
of the mmWave radar to study the open-set person recognition
problem at occluded conditions. To our knowledge, this work
is the first mmWave radar-based PID framework with open-set
recognition capability designed for occlusion conditions. Fig. 1
overviews the OSO-PID framework, and major components are
explained next.

The mmWave-ocPID dataset: To address the data gap, we
build a new dataset, mmWave-ocPID, containing mmWave radar
measurements from 23 human subjects in various occlusion
scenarios. We perform extensive experiments emphasizing the
evaluation of mmWave radar-based PID under multiple oc-
clusion scenarios, as shown in Fig. 2. The dataset comprises
data collected from commercial off-the-shelf (COTS) sensors:
(1) measurements collected using a mmWave radar, and (2)
synchronized RGB and depth images collected using an RGB-D
camera. The dataset is collected at various occlusion conditions,
with different objects, e.g., poster boards, clothes racks and
plants between human subjects and sensors. The dataset contains
overall 300,000 radar frames, together with more than 600,000
RGB and depth images, providing a comprehensive resource for
investigating mmWave radar-based PID under occlusion. Note
that the images are collected for experiment recording and vi-
sualization purposes, they are not used in mmWave radar-based
PID training or inference.

The PID neural network model with data augmentation: To
enrich the information in radar point clouds, we propose a new
data augmentation strategy that leverages the spatial-temporal
relationships within radar point clouds to generate novel signa-
tures, enhancing the performance of person identification. Then,

we propose a novel neural network for person identification in
occluded scenarios, called mm-PIDNet. The network, coupled
with a new supervised contrastive learning module [24], takes
a sequence of augmented radar point clouds as input to extract
high-dimensional features and spatial-temporal relationships to
achieve accurate and robust person identification under oc-
cluded scenarios. mm-PIDNet combines a content encoder, a
transformer encoder [25] and a bidirectional long short-term
memory (Bi-LSTM) [26] module to extract features for the
identification of individuals. The supervised contrastive learning
module implements an offline buffer specifically designed for
contrastive samples and uses the momentum update method [27]
to maintain sample consistency. It brings samples with the same
class label closer in the feature space, mitigating the overfitting
issue of the PID model and generating a compact feature space
that benefits OSR learning.

The open-set recognition method: We propose a new method
that combines Weibull models with mm-PIDNet for open-set
occluded person identification. The method not only classifies
testing samples from known classes but also recognizes testing
samples from unknown classes. Our method training involves
two key steps: (1) closed-set training, and (2) fitting Weibull
models. During the closed-set PID network training, we incor-
porate supervised contrastive learning to establish a compact fea-
ture space. According to [23], the Weibull distribution function
is upper bounded, which is suitable to limit the feature support
region of each known class. Hence, we utilize Weibull models,
fitted using distances between activation vectors [21] and class
centers derived by averaging activation vectors from correctly
classified training samples. Using the fitted Weibull model, the
probability of each testing sample belonging to each class can
be determined by measuring the distance between the feature
from the pre-trained mm-PIDNet and the class center. The fitted
Weibull model further refines the feature space constructed by
mm-PIDNet by constraining the distance of features from the
class center, and it generates probabilities for identifying known
classes as well as recognizing unknown classes.

To summarize, the contributions of this paper are as follows:
� We use a COTS mmWave radar sensor to build the

mmWave-ocPID dataset, featuring a diverse array of oc-
clusion scenarios. We make the dataset publicly available
in IEEE Dataport (http://ieee-dataport.org/12089), which
includes over 300, 000 radar frames and over 600, 000
RGB and depth images.

� We propose a novel neural network combining transformer
and Bi-LSTM architectures for PID in occluded scenar-
ios. Enhanced with a data augmentation strategy and a
supervised contrastive learning approach, these methods
effectively reduce model overfitting and improve PID per-
formance under occlusions.

� We present a novel OSR framework for mmWave radar
point cloud-based PID. Supervised contrastive learning
enables the construction of a compact feature space, and
Weibull models enable accurate identifications of samples
from both known and unknown classes.

� Experimental results show an average PID F1-score reach-
ing 0.93 on our dataset. Compared with state-of-the-art
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Fig. 2. PID experimental layout and data collected in experiments. (a) Experimental layout with human subjects, obstacles, and sensing devices. (b-d) RGB
image, depth image, and mmWave radar point cloud of a walking individual, respectively.

methods, our method shows an F1-score improvement of
up to 13.41% in distinct occlusion cases. Additionally, our
open-set method achieves an F1-score over 80% with an
openness score below 14.36%.

The rest of the paper is organized as follows: Section II
presents related work. Section III describes an overview of
the theoretical analysis and the problem statement. Section IV
illustrates our OSO-PID framework design in detail. Section V
describes experimental setups and our mmWave-ocPID dataset.
Section VI reports evaluation results. Section VII concludes
our work.

II. RELATE WORK

A. Mmwave Radar-Based Person Identification

Person identification and re-identification are fundamental
tasks, which have achieved significant success in the computer
vision field [28], [29]. For example, [28] proposes a person
re-identification model to learn resolution-adaptive representa-
tions for recognizing individuals using images collected from
various resolutions. [29] considers adversarial attacks in person
re-identification and develops a robust model using generative
metric learning to enhance identification performance. Although
these computer vision-based methods have achieved satisfactory
results, their performance could be degraded under heavy or
full occlusion, as it affects the ability of the camera to capture
information about the whole body or identifiable parts of the
target. In this paper, we address this issue by using a radio
frequency (RF) sensor, mmWave radar, which can penetrate
common obstacles for person identification.

Gait analysis-based PID methods using mmWave radar fea-
tures can be categorized into two types: Dopper and point cloud
methods. Dopper-based techniques, such as those in [30], [31],
[32], capture micro-Dopper signatures from human movement.
These signatures are transformed into visual representations,
which can be processed by computer vision algorithms, such
as CNN-based methods [33], [34] and vision transformer-based
methods [35], [36], [37], [38], to extract gait features for identifi-
cation. For example, in [7], mmWave signals are analyzed in the
range-Dopper domain using a CNN, achieving 92% accuracy in
PID for up to four subjects.

Point cloud-based methods leverage advancements in radar
devices, incorporating more antennas for collecting point clouds
from human subjects. Recent developments in PID or re-
identification (Re-ID) [8], [9], [10] showcase the use of recurrent

neural networks (RNN), as seen in [8], achieving 89% PID
accuracy for 12 subjects, even distinguishing two concurrently
walking subjects.

To our knowledge, currently available mmWave radar
point cloud datasets and PID methods lack consideration for
occlusions and interference caused by obstacles in the scene.
Consequently, our focus is on tackling mmWave radar-based
PID under heavy occlusions. We achieve this by creating a new
dataset and developing a suitable network model to overcome
the challenges.

B. Data Augmentation for Point Clouds

In scenarios with limited available training samples, em-
ploying data augmentation is a common strategy to mitigate
overfitting and enhance model robustness by diversifying and
expanding the sample set. Standard augmentation techniques
for point cloud datasets include sample dropping, scaling, trans-
lation, rotation, and point-wise jittering [39], [40].

Recent advancements in point cloud augmentation methods
are more sophisticated. PointMixUp [41] extends the mixup
technique [42] from the image domain to point clouds. This
method interpolates a new sample between two point cloud
samples by finding the shortest path. PointAugment [43], an
auto-augmentation framework, learns through adversarial train-
ing to generate samples aligning best with the classifier for point
cloud classification. Additionally, PatchAugment [44] can be
seamlessly integrated into the model for localized point cloud
augmentation.

While most current methods emphasize augmenting point
cloud datasets to improve static object classification, they may
not effectively handle sparse radar point clouds. In this paper,
we introduce a novel data augmentation approach tailored to
mmWave radar point clouds. This method explicitly captures
motion relationships to enhance the unique features of radar
data, enriching its representation through a specialized data
augmentation step.

C. Open-Set Recognition (OSR)

Open-set recognition characterizes scenarios where new
classes, unseen during training, emerge in testing. Classifiers are
required to accurately identify known classes while refraining
from assigning known labels to unseen classes [19]. Pioneer-
ing work in [45] establishes the foundations of the open-set
recognition task. The initial deep learning approach for OSR,
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Fig. 3. Multipath propagation of mmWave radar signals in an occluded per-
son identification scenario. The terms “TX Path” and “RX Path” refer to the
transmission and reflection paths of radar signals between the radar sensor and
the human subject, respectively.

named OpenMax, is introduced by [21], leveraging the Weibull
model from the extreme value distribution. Additionally, gener-
ative adversarial networks (GANs) have been employed for this
task [22], [46], with Neal et al. [46] generating a dataset using
GANs, including unknown samples. This dataset, combined
with a standard classification dataset, is then utilized to train
an open-set classifier.

Other approaches include reconstruction-based methods [47],
[48], [49], wherein poor test-time reconstruction serves as an
open-set indicator. Prototype-based methods [50], [51] represent
known classes through learned prototypes and identify open-set
samples based on distances to these prototypes.

In the radar-based OSR task, Ni et al. [23] propose an approach
utilizing a deep discriminative representation network and the
Weibull model for open-set PID based on micro-Doppler sig-
natures. Another study by [52] introduces an ensemble learning
approach, incorporating reconstruction and multivariate Gaus-
sian models, for the micro-Dopper-based open-set PID task.
In contrast to these prior methods, our work aims to address
the open-set PID problem using radar point clouds for heavy
occlusions. Our experimental results demonstrate the efficacy of
our method, achieving satisfactory performance on the open-set
PID task.

III. OVERVIEW AND PROBLEM STATEMENT

In this section, we present an overview of the theoretical
analysis and the problem statement.

A. Mmwave Signals in Occlusion Scenarios

In this study, we use a frequency-modulated continuous
wave (FMCW) mmWave radar to identify individuals in oc-
cluded scenarios, where the reflected signals from an individual
propagate along multiple paths, as shown in Fig. 3. At the time
slot kTc ≤ t ≤ (k + 1)Tc at the k-th FMCW chirp, where Tc

denotes the duration of the chirp, the received intermediate
frequency (IF) radar signal can be formulated as:

g(t) = gD(t) + gI(t) + b, (1)

where gD(t) and gI(t)denote the signal components reflected by
an individual from the direct and indirect paths, respectively, and

b represents the noise term, i.e., reflections from the environment
other than the individual [53].

As shown by Path 1in Fig. 3, for the received signal component
gD(t) reflected by an individual through a direct path, the IF
signal can be represented as [53]:

gD(t) =
1

2
ΓA0e

i2πfr(t−kTc)e−i2πfvkTcei4πf0r/ζ , (2)

where A0 and f0 are the amplitude and carrier frequency of the
transmitted signal, respectively. r is the range between the
subject and the receiver. ζ and v respectively represent
the speed of light and the relative velocity of the subject.
fr = 2�r/ζ − 2vf0/ζ and fv = 2vf0/ζ respectively denote the
fast and slow time frequencies. � = B/Tc is the slope of the
sweep frequency, where B is the sweep bandwidth. Γ denotes
the attenuation factor determined by the radar cross section
(RCS) of the subject and propagation loss due to obstacle
penetration and propagation distance. As reported by [16], [54],
[55], the attenuation factor is affected by the materials and
dimensions of obstacles, which can weaken the signal or even
make it undetectable. We further analyze the impact of obstacles
on mmWave radar signals in VI-E.

For the received signal component through an indirect path,
the component undergoes additional reflections by the obstacle
and other objects in the environment, as shown by Path 2 (by
obstacle) and Path 3 (by ceiling) in Fig. 3. If we use gOI and gEI to
represent the secondary reflection components by the obstacle
and other environmental objects, gI(t) in (1) can be expressed
as: gI(t) = gOI (t) + gEI (t).

For reflection components due to an obstacle, e.g., through
Path 2, the IF radar signal can be formulated as [53]:

gOI (t) = gD(t) · ρei2πΔfr(t−kTc)e−i2πΔfvkTcei4πf0Δrζ , (3)

where ρ is the reflectivity of the obstacle surface responsible
for the second reflection. Δfr ≈ 2�Δr/ζ and Δfv = 2Δvf0/ζ
represent the fast-time and slow-time frequency differences
between signals from Path 1 and Path 2, respectively. Δr is
the length difference between two propagation paths, and Δv is
the radial velocity difference present in the radar signals. Note
that due to the relay reflections from other objects than obstacles
in the environment, the IF signal gEI (t) in Path 3 has the same
formulation as that of Path 2, but with a different attenuation
factor, as it does not penetrate obstacles [56].

To summarize, as shown in (1), the radar IF signal experiences
attenuation from the direct path and multipath interference from
the indirect path. This results in power fading and a more
complicated multipath point cloud, degrading person identifi-
cation performance. However, multipath propagation can also
provide valuable information for radar systems, such as human
sensing through relay reflections [57], and wireless communi-
cation [58], [59].

B. Problem Statement

The mmWave radar data that we use for person identification
is the radar point cloud data, which can be calculated from the
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IF signal in (1) through fast fourier transform (FFT) [60]:

P = F(g), (4)

where F(·) denotes three distinct FFT operations, including
Range-FFT, Doppler-FFT and Angle-FFT, for measuring the
ranges, velocities and angles of the target. Each radar point
cloud P contains multiple points consisting of four attributes
pn = (xn, yn, zn, vn), n ∈ [1, N ], where N is the total number
of points in the point cloud. (xn, yn, zn) represents 3D coordi-
nates of the point, and vn denotes the velocity.

The point cloud P obtained from different individuals con-
tains distinct gait information used for identification. However,
due to the interference from the obstacle and sparse nature of
mmWave point clouds, it is insufficient to use a single point cloud
for person identification. Thus, we consider using a sequence of
radar point clouds S for this purpose. Given a classifier Ω, the
point cloud sequence S is input into Ω, which outputs the proba-
bilities associated with each identity. This can be formulated as:

P(c|S) = Ω(S), (5)

where c ∈ {1, 2, . . . , C} represents the c-th identity, andP(c|S)
denotes the probability of the sample S belonging to the c-th
identity.

Furthermore, for open-set person identification, we need
an open-set classifier Λ that can not only identify the target
from known classes but also recognize unknown classes. It is
defined as:

P(c|S) = Λ(S) (6)

where c ∈ {1, 2, . . . , C, C + 1} represents the c-th identity
class, with C + 1 denoting the unknown identity class.

In this study, we design a novel classifier Ω using neural
networks and supervised contrastive learning. Furthermore, we
propose combining Weibull models with the pre-trained Ω as
the classifier Λ for open-set person identification.

IV. METHOD

Our OSO-PID framework includes two major components:
the mmWave point cloud-based PID described in Section IV-A
and the open-set recognition described in Section IV-B.

A. mmWave Radar Person Identification

For person identification under occlusions, we first propose
to use a novel data augmentation strategy, called point motion
signature (PMS) to take advantage of the spatial-temporal
relationships between consecutive point cloud frames. As a
result, mm-PIDNet uses a sequence of augmented point clouds
as input. Then, the proposed mm-PIDNet uses a content en-
coder consisting of fully connected layers, which generates a
high-dimensional feature for each point cloud in the sequence.
After that, we use a transformer encoder with a self-attention
mechanism to learn the spatial relationships within the sequence
of features. The output from the transformer encoder is fed into
a Bi-LSTM network for learning the temporal relationships, and
the last hidden states of both forward and backward passes of
Bi-LSTM are summed to produce a global vector. The vector

is used for identifying the individual through linear layers and
a softmax layer. Simultaneously, we propose a supervised con-
trastive learning module to minimize intra-class distance and
maximize inter-class distance in the feature space. To this end,
we implement an offline buffer for the global vectors from Bi-
LSTM and use the momentum update method [27] to maintain
feature consistency between the vectors stored in the buffer and
those currently predicted by the network. The contrastive loss
is used to update the network to learn discriminative features
for each individual. Fig. 4 illustrates the proposed pipeline and
architecture. Details are presented in the following.

1) Data Augmentation: Due to attenuation caused by obsta-
cles, mmWave point clouds are sparser, leading to potential per-
formance degradation in subject identification. To overcome this
challenge, we introduce a data augmentation strategy designed to
leverage the spatial-temporal relationships among radar frames
to enhance PID performance.

We propose a new data augmentation strategy named point
motion signature (PMS) to accurately capture the dynamic
changes occurring between adjacent radar frames. Our data
augmentation is based on interpolation analysis across both
spatial and velocity variations, to gather a richer set of motion
information. This involves utilizing the current point’s attributes
to calculate the differences with the attributes of the three nearest
points in the preceding point cloud. More specifically, in the
context of two adjacent radar point cloud framesPl andPl+1, we
initially choose a point from Pl+1. Subsequently, we calculate
the three closest points in Pl based on euclidean distance. The
differences in coordinates and the velocity are merged with the
initial point signatures via concatenation.

Our design is partly inspired by the point flow method [61],
which selects the closest points in adjacent frames and calcu-
lates the velocity difference of the two nearest points as a new
signature. However, solely focusing on velocity disparity fails to
adequately capture the inter-frame motion relationship. Taking
spatial differences into account, our method not only increases
the training data volume by 4 times compared to its original size
but also provides a richer set of dynamic information related to
human motion. Experiments show that it greatly improves PID
performance.

2) Network Structure for Person Identification: As illus-
trated in Fig. 4, the proposed PIDNet comprises three main mod-
ules. The content encoder maps the augmented point cloud se-
quence into a high-dimensional feature space and subsequently
extracts a high-dimensional feature from each point cloud in
the sequence. The spatial-temporal extractor incorporates a
transformer encoder and a Bi-LSTM module to capture the
spatial-temporal relationships of successive point cloud frames.
Additionally, supervised contrastive learning establishes an of-
fline buffer designed to store features generated by Bi-LSTM,
which are used to compute the contrastive loss. Finally, linear
layers are used with a softmax function to determine the person’s
identity.

Content encoder: Given a sequence of point cloud frames, the
content encoder takes each point cloud Pl with N points as in-
put. Each point pln (n ∈ [1, N ]) encompasses sixteen attributes,
including the 3D coordinates, velocity, and PMS signatures.
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Fig. 4. Architecture of our mmWave radar-based PID model with two major components: data augmentation and PIDNet. The data augmentation module enriches
the motion features and outputs a sequence of augmented point clouds S for identification improvement. The PIDNet model takes S as input and consists of three
components for feature extraction: (1) a content encoder, comprising MLP layers, which extracts features from each point cloud with an attention function and
outputs a sequence of high-dimensional features, F; (2) a transformer encoder, which takes F as input to enriches spatial semantic information in the features; and
(3) a Bi-LSTM encoder, which takes the transformer encoder’s output, FTE , as input to capture temporal relationships and generate a comprehensive gait feature,
fBE . The final MLP processes fBE to produce the identification result.

The content encoder processes each point independently using
a shared-weight multi-layer perceptron (MLP) M and produces
a high-level feature denoted as f ln = M(pln; ΘM), where ΘM
represents the learnable parameters of M. Subsequently, the
features of all points within a frame are aggregated into a global
feature using a point attention function. This function assigns a
score to each point in the present point cloud and calculates a
weighted sum of all points. This adaptive mechanism allows the
feature extractor to adjust the contribution of each point based on
the significance of identity-specific features associated with the
corresponding body part. The attention procedure is computed
as follows:

fl =

N∑
n=1

Ap

(
f ln; ΘAp

)× f ln, (7)

where Ap(·) is the point attention implemented by two linear
layers and a softmax function, ΘAp

is the set of parameters
belonging to the point attention. The two linear layers comprise
256 and 64 hidden units, respectively.

Transformer encoder: Given the sparse nature of radar point
clouds, the inherent attributes within a single frame are in-
sufficient for effective learning. Therefore, enhancing spatial
features for each point cloud frame by leveraging the input point
cloud sequence becomes crucial. Drawing inspiration from the
transformer architecture [25], originally designed for processing
word sequences, we employ a transformer encoder to boost
spatial semantic information for each point cloud.

The self-attention mechanism [62] serves as the fundamental
element within this layer, generating refined attention features
based on the input point cloud sequence. In particular, it takes
a sequence of global features of point clouds as input and com-
putes three vectors for each feature: query, key and value through
linear transformations. Three matricesQ ∈ R

L×da ,K ∈ R
L×da

and V ∈ R
L×de are the results of linear transformations applied

to the input feature matrix F ∈ R
L×de , respectively, where L

denotes the length of the input sequence, de represents the di-
mension of the global feature of each point cloud, and da denotes
the dimension of the query and key vectors. The calculation is

expressed as:

(Q,K,V) = F · (Wq,Wk,Wv) , (8)

where Wq ∈ R
de×da ,Wk ∈ R

de×da and Wv ∈ R
de×da are

learnable parameter matrices. In this work, we set da to be
de/4 for computational efficiency. Subsequently, Q and K are
employed to compute the softmax normalized attention weights
using matrix dot-product operations.

A = S
(
QKT

√
da

)
, (9)

where S represents the softmax function. A is a weight matrix
used to multiply the value matrix V to produce self-attention
features. These features are subsequently normalized through a
layer normalization function L, followed by a residual connec-
tion operation:

FO = L(AV) + F. (10)

The resulting feature matrix FO is fed to a feed-forward
neural network N , followed by another layer normalization
and residual connection to generate the final output FTE =
L(N (FO)) + FO.

For each point cloud global feature of the input sequence,
the self-attention mechanism is employed to calculate dynamic
weights to all features within the matrix F. Subsequently, the
weight matrix A will be utilized to conduct a weighted sum-
mation of the value matrix V, thereby significantly enhancing
the infusion of semantic information in the derivation of FTE .
Moreover, the inclusion of the layer normalization L along with
the residual connection serves to bolster stability and effectively
mitigate the challenge of vanishing gradients.

Bi-LSTM gait feature extractor: Due to the sparsity of radar
point clouds, the gait information in a single radar point cloud
is incomplete. This indicates a single high-dimensional fea-
ture from a radar point cloud is insufficient to characterize
a target person. The transformer layer augments more spatial
information within each radar point cloud feature present in
the current input sequence. We further feed the sequence of
the extracted features FTE = [fTE

1 , fTE
2 , . . . , fTE

L ] (where L
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is the length of the sequence) into Bi-LSTM [26], obtaining a
comprehensive gait feature across the temporal dimension to
improve the identification performance.

Following the input of the adapted features into Bi-LSTM, the
last hidden state of the forward LSTM and the last hidden state
of the backward LSTM are summed to represent the global gait
feature. Additionally, two fully connected layers and a softmax
function are used to produce the output of the classification
probabilities for C classes.

3) Supervised Contrastive Learning: In the realm of effec-
tive representation learning, contrastive learning [27] guides
pairs of samples to approach or diverge in feature space based
on their class labels during the training process. In line with this
principle, we introduce a supervised contrastive learning method
to encourage samples with the same class labels to be closer in
feature space, while those with distinct labels experience greater
separation. This method serves a dual purpose: (1) mitigating
model overfitting in the PID task, and (2) crafting a compact
feature space suitable for addressing open-set problems.

Due to the GPU storage constraints, traditional contrastive
learning methods often focus on assessing similarity within the
current input batch. In our approach, we introduce an offline
buffer specifically designed for contrastive samples, illustrated
in Fig. 4 bottom. This buffer operates as a data queue with a
capacity that surpasses the limitation of a standard mini-batch
size. In our experiments, the buffer size is configured as 8,192.

During training, samples in the buffer are continuously re-
freshed. Features generated by the Bi-LSTM extractor are fed
into the offline buffer. When the quantity of samples in the
buffer surpasses its capacity, the oldest mini-batch sample will
be removed. This operation is advantageous as the oldest sample
tends to be the most outdated and least consistent with the latest
ones. Moreover, to further maintain the consistency between the
samples in the buffer and the current mini-batch sample, we
employ the momentum update method introduced by [27]. In
the training phase, the PID network without final fully connected
layers as the encoder Q, generates the newest sample to replace
the oldest ones in the buffer. Simultaneously, an additional
encoderG sharing the same structure as encoderQ, is introduced
to update all samples in the buffer. Formally, the parameters of
Q and G are denoted as ΘQ and ΘG , respectively. The update of
ΘG is performed by:

ΘG = σΘG + (1− σ)ΘQ, (11)

where σ ∈ [0, 1) is a momentum coefficient. During the learning
process, back-propagation updates only the parameters ΘQ,
while the update of the encoder G relies on the parameters
ΘQ. The momentum update ensures a smoother evolution of
ΘG compared to ΘQ and maintains the coherence of samples
between the buffer and the current mini-batch.

4) Loss Functions: In the learning process, the PID network
is primarily optimized using a combination of the cross-entropy
loss and the contrastive loss. Let M denote the number of
training samples in the current batch, ymc represents the ground
truth label, taking the value of 1 if the sample belongs to c-th
person and 0 otherwise. The symbol ŷmc denotes the probability
that the sample belongs to c-th ID class. The cross-entropy loss

is formulated as:

Lcro = − 1

M

M∑
m

C∑
c

ymc log (ŷmc) . (12)

For the contrastive learning loss, we compute the similarity
between the samples in the current batch and the samples up-
dated in the buffer using the encoder G via the mean squared
error (MSE) loss. Let U denote the buffer size, and D() denote
the similarity function quantifying the relationship between a
feature fba from the current batch and a contrastive feature fbu
from the buffer, calculated via a dot product. Let lo ∈ {−1, 1}
denote the pre-defined similarity label determined by whether
fba and fbu share the same class label or not. The MSE loss is
calculated as:

Lmse =
1

MU

M∑
m

U∑
u

‖D (fba, fbu) , lo‖2 . (13)

The final loss function for the person identification is:

Lide = Lcro + ε Lmse, (14)

where ε is a hyper-parameter determining the relative influence
of outcomes from the two distinct loss functions. In our experi-
mental setup, ε = 0.1.

In our experiment, the cross-entropy loss is pivotal in de-
termining the performance of person identification. Simultane-
ously, the supervised contrastive learning loss serves the dual
purposes of mitigating model overfitting and establishing a
compact feature space to address the open-set PID problem.

B. Open-Set Recognition

For open-set person identification, as depicted in Fig. 5, we
first establish a pre-trained mm-PIDNet using training samples
from known classes. During mm-PIDNet training, our super-
vised contrastive learning method draws features with the same
identity label closer together while pushing those with different
identity labels farther apart, resulting in a compact feature space
for each individual. When a sample from an unknown person
is fed into the pre-trained mm-PIDNet, the high-dimensional
feature may not fall into the feature region of each known
individual. Thus, we propose to use the Weibull model, which
has an upper-bounded distribution function, to further refine the
support region of each known class in the feature space. The
features of correctly identified training samples, extracted from
mm-PIDNet before the softmax layer, are used as “activation
vectors”. These vectors are averaged to compute the class center
for each individual. Then, we compute cosine distances between
activation vectors and the corresponding class center, and the
largest 20 distances are used to fit the Weibull model for each
class. When a testing sample is input into mm-PIDNet, the
probabilities belonging to each known identity and the unknown
identity are determined by the fitted Weibull models.

1) The Closed-Set Pre-Trained PID Model: To effectively
utilize latent representations, we pre-train a mm-PIDNet model
under the closed-set classification assumption, as shown in
Fig. 5. Initially, the PID model is trained using samples with
known ID classes, optimized under the identification loss Lide
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Fig. 5. The open-set occluded person identification method consists of two modules: (1) a pre-trained mm-PIDNet model for extracting gait features and
computing the distance with the corresponding class centers, and (2) a second module that fits Weibull models for determining open-set classification using the
obtained distance measures.

and supervised contrastive learning loss Lmse. Subsequently,
the softmax layer of the pre-trained mm-PIDNet (as indicated in
Fig. 4) is removed. The output of pre-trained mm-PIDNet will
be employed for fitting Weibull models in subsequent steps.

2) Fitting Weibull Models: We apply the extreme value the-
ory (EVT) to open-set recognition, where EVT provides a
functional form for modeling the probability of which a sample
belongs to each class, including the unknown class [21], [63].
According to the Fisher-Tippett theorem [64], EVT states that
the distribution of extreme values from a sequence of indepen-
dent and identically distributed (i.i.d.) random variables con-
verges to one of three possible forms: the Gumbel distribution,
Frechet distribution, or reversed Weibull distribution. While the
Gumbel and Frechet distributions are suited for unbounded data,
the Weibull distribution is used for bounded data [65]. Previous
studies [66], [67] have shown that the open-set samples follow a
Weibull distribution due to their bounded nature. Therefore, we
use the Weibull distribution in our framework to calculate the
probabilities that a sample belongs to each identity, including
the unknown one.

For each known identity, we first compute the class center
using correctly identified training samples. These samples are
input into a pre-trained mm-PIDNet without the softmax layer,
and the resulting outputs are averaged to generate the class
center. Then, we compute the cosine distances between features
of correctly classified training samples and their corresponding
class centers, yielding the class-specific distance distribution for
each known identity. After that, we fit a class-specific Weibull
model using the 20 largest cosine distances of each class. The
cumulative distribution function (CDF) of the fitter Weibull
model for the c-th class with correctly classified training samples
is formulated as [68]:

Wc(dc; λc, βc) =

⎧⎨
⎩1− exp

[
−
(

dc

λc

)βc

]
if dc ≥ 0,

0, otherwise,
(15)

where λc > 0 and βc > 0 are the scale and shape parameters,
respectively, and dc represents the cosine distance between the
feature vector of an input sequence of point clouds and the c-th
class center. Parameters of the Weibull model (λc, βc) can be
estimated by the procedure described in [69].

For a point cloud sequence sample S, the open-set score Ψ̂c

for the feature vector ν = mm-PIDNet(S) belonging to the c-th

known class is calculated as:

Ψ̂c (dc; λc, βc) = νc ·
[
1− γ − c

γ
Wc (dc; λc, βc)

]
, (16)

where νc is the c-th element of the vector ν. γ denotes the
number of top classes to be revised that are sorted by distance,
with γ = 7 by default.

According to (15), when the parameters λc and βc are pro-
vided,W(dc; λc, βc) exhibits a monotonically increasing pattern
as dc increases, consequently causing a decrease in the open-set
score Ψ̂c. This suggests that the likelihood of a sample belonging
to a known class decreases as the distance from the sample to the
class center increases. Then, the open-set score Ψ̂C+1 indicating
a sample belonging to the unknown class can be calculated as:

Ψ̂C+1 = 1−
C∑
c

Ψ̂c (dc; λc, βc) , (17)

where C is the total number of known identity classes.
Lastly, the vector of probabilities of the input sequence S

belonging to each of the identity c in C + 1 classes (including
the unknown identity class) can be computed by the softmax
function:

P(c|S) = eΨ̂c∑c=C+1
c=1 eΨ̂c

. (18)

3) Open-Set PID Decision Making: For a given point cloud
sequence sample of a person in query and C number of known
identities, the open-set PID task is to determine the person’s
identity among the C + 1 classes, where the (C + 1)-th label
represents the unknown (intruder) class.

In the testing phase, the open-set identification model predicts
the identity label ŷ for the point cloud sequence sample S of a
person in query. Let P(c|S) denote the probability belonging to
the c-th identity computed by (18). We use a threshold δ default
to 0.4 to determine if the sample S belongs to one of the known
classes. This decision function assigns a known identity label if
the highest probability exceeds threshold δ; otherwise, it rejects
the input as an unknown intruder:

ŷ =

{
arg max

c∈{1,...,C+1}
P(c|S), if P(c|S) ≥ δ,

unknown intruder ID, otherwise.
(19)
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Fig. 6. PID sensing devices: an RGB-D camera for capturing RGB and
depth images, and a mmWave radar with a DCA1000EVM data collection card
collected to a laptop.

V. EXPERIMENT AND DATASET

This section describes our experimental setup as well as the
newly collected mmWave-ocPID dataset for the training and
evaluation of mmWave PID models under heavy occlusions.

A. Experimental Setup

We employ a COTS FMCW radar along with an RGB-D
camera to capture sequential data of individuals walking behind
obstacles, as illustrated in Fig. 6. We use an indoor environment
featuring multiple configurations of layouts and obstacles, as
depicted in Fig. 2(a).

MmWave radar and camera: We use a TI IWR6843ISK-ODS
radar for transmitting and receiving radar signals, paired with
an Intel RealSense D435 camera for capturing RGB and depth
images at the resolution of 424× 240.

The radar configuration includes three transmitter antennas
and four receiver antennas, transmitting 128 chirps per frame
and sampling 256 signals per chirp. The radar settings are
as follows: start frequency at 60.05 GHz, frequency slope at
130.029 MHz/μs, and bandwidth at 3.9 GHz. We set the chirp
cycle time to 30μs, idle time to 100μs, and sampling start
time as 2μs. This configuration yields a range resolution of
4.5 cm and a maximum unambiguous range of 11.52 m. It allows
measurement of a maximum radial velocity of 3 m/s with a
resolution of 0.049m/s. Radar frames are sampled at 15 Hz,
while RGB and depth images are acquired at 30 Hz. Raw signals
from the radar to a laptop are transmitted using a DCA1000EVM
data capture card.

Obstacles: Considering the diverse electromagnetic wave
absorption and reflection properties of different materials, our
experiment employs three types of obstacles: a clothes rack, a
poster board, and a potted plant. The radar and camera devices
are positioned on a table at 0.9 m height, while the obstacles are
placed 1.5 m away. The clothes rack stands at 1.5 m height, the
poster board is 1.8 m tall, and the pot plant has an approximate
height of 1.5 m within a 0.5 m ceramic flower pot. To enhance

realism, three pieces of clothing are hung on the designated
rack. To broaden the scope of scenarios and comprehensively
evaluate radar sensor performance, walking is conducted in the
indoor environment without occlusion.

Occlusions: In our experiments, we use three types of obsta-
cles: a clothes rack with three pieces of clothing, a poster board,
and a potted plant. We choose these obstacles because they are
common objects encountered in real-world scenarios, and they
contain different materials and dimensions, producing different
attenuation and multipath effects on mmWave radar signals. In
addition, three types of occlusions are observed during data
collection. First, the poster board completely blocks the line
of sight of both the radar and camera, resulting in full occlusion
of the target. Second, when the clothes rack and potted plant are
used as obstacles, some signals can pass through gaps in clothing
and plant leaves, leading to heavy occlusion of the target. Third,
we also collect multi-modal data from the same experimental
configuration without occlusion for comprehensive evaluations
and comparisons.

Volunteers: Our dataset comprises samples collected from 23
individuals, including 20 males and 3 females. The recruited
volunteers have ages ranging from 22 to 41 years old, heights
from 1.65 m to 1.90 m, and weights from 50 Kg to 100 Kg. In
each occlusion scenario, participants are instructed to perform
inbound/outbound walking behind the obstacles. Each subject
completes 4 consecutive minutes of walking, capturing 3,600
radar frames and 7,200 RGB and depth images by the devices.

Signal processing: We first use the FFT [60] and CA-
CFAR [70] algorithms to generate radar point clouds for evaluat-
ing the OSO-PID framework. It includes the use of Range-FFT
and Doppler-FFT on raw signal data, followed by CA-CFAR
on the range-Dopper map to detect peak value indices. These
indices guide Angle-FFT to produce point clouds. To diversify
and thoroughly assess the CA-CFAR point clouds, we exper-
iment with false alarm rates (FAR) of 0.02, 0.05, and 0.08.
Meanwhile, we use the maximum-energy time-frequency ridge
extraction method [71] to generate radar point clouds, which
locates the time-frequency ridge in the range profile to determine
subject range bins in the range-Dopper map. Considering the
non-rigid human body, we select 10 range bins near the ridge to
represent various body segments. We then choose the top 256
indices with the highest energy from the associated region in
the range-Dopper map for further processing via Angle-FFT.
Our experiment sets a penalty factor of 0.05 for the maximum-
energy time-frequency ridge method. In total, we construct two
types of radar point cloud datasets using the CA-CFAR and the
time-frequency ridge algorithms, respectively.

B. mmWave-OcPID Dataset

The dataset contains radar point clouds, RGB and depth
images, as depicted in Fig. 2. In each scenario, 23 subjects
individually engage in a 4-minute walking session, resulting in
the capture of 3,600 frames per person. Within each scenario,
approximately 80,000 frames are collected. Our experiment has
4 scenarios, where each represents a distinct occlusion condition.
Despite minimal data loss, the mmWave-ocPID dataset contains
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over 300,000 frames of mmWave radar measurements and over
600,000 RGB and depth images.

In the radar signal collection process, inherent constraints
such as the limited number of antennas and poor angular res-
olution result in sparse point cloud capture. After employing
signal processing, some point clouds may still be noisy. To this
end, we use a heuristic method to constrain the X dimension
and velocity V to ±1m and ±2 m/s, and set the minimum
Z dimension value to −0.9 m. These heuristic rules improve
overall quality, however reduce the number of points associated
with each individual in each frame. To address this issue, the
data augmentation method from Section IV-A is performed to
enrich the point cloud samples.

Compared with other mmWave radar-based PID datasets,
e.g., the mmGait dataset [9], our mmWave-ocPID dataset is
a multi-modal dataset comprising radar data, RGB, and depth
images with a variety of occlusion scenarios. We integrate vari-
ous signal processing methods to generate point clouds, thereby
augmenting the diversity of the dataset and facilitating com-
prehensive evaluations. We have obtained institutional review
board (IRB) approval for all experiments conducted in this work,
and we make the dataset publicly available in IEEE Dataport:
https://dx.doi.org/10.21227/vkx6-fy49.

VI. EVALUATIONS

A. Implement Details

1) Person Identification Settings: In our experimental setup,
each input point cloud sequence sample contains 45 point clouds.
Note that, the content encoder network processes each point
cloud individually, taking a fixed dimensional of 256 points as
input. After applying the data acquisition constraints outlined in
Section V-B, certain point clouds may contain fewer than 256
points. Hence, we augment the acquired point cloud by repeating
points from the same cloud to pad it up to 256. Additionally,
because the initial point cloud in each input sequence sample
lacks PMS features, we zero-pad all points in the initial point
cloud for both training and testing samples.

To ensure consistency across all environmental configurations
during the dataset split, we maintain a fixed ratio of training
frames to testing frames for each individual in each scenario,
set at 7 : 1. The samples are then split using a sliding window
approach, with each window overlapping the preceding one by
40 frames.

Our PID network is trained end-to-end using the ADAM
optimizer with a weight decay of 1e− 5. The initial learning
rate is 0.001, and the batch size is fixed at 256. Training is
conducted using an RTX 3090 GPU. The model incorporates
shared-weight linear layers with input sizes of 16, 64, and 256,
each followed by a ReLU activation function. The Bi-LSTM
is configured with an input size of 256 and a hidden size of
128. The two classification layers have input sizes of 128 and
64, respectively, with the output of the first layer activated by a
ReLU function.

2) Open-Set Settings: Open-set problems exhibit varying
difficulty based on the ratios of the known to unknown categories
in the testing set. Our approach aligns with the conceptual

TABLE I
OPENNESS (%) CONFIGURATIONS IN OUR EXPERIMENTS

TABLE II
AVERAGE PID PERFORMANCE UNDER OCCLUSION SCENARIOS, EVALUATED

USING F1-SCORES AT FIXED FALSE ALARM RATES (FAR) AND

TIME-FREQUENCY PROCESSING

framework proposed by Geng et al. [19]. Let Ntrain denote the
number of training categories, and Ntest denote the number of
testing categories. The openness is defined as:

openness = 1−
√

2Ntrain

Ntest +Ntrain
, (20)

The concept of openness is quantified by a value between 0 and
1. When Ntrain equals Ntest, openness is zero, reducing to a
closed-set problem. The difficulty of the open-set task grows as
the openness value increases. To demonstrate the algorithm’s ro-
bustness across various openness levels, we create nine degrees
of openness by randomly designating 11 classes as known and
the remaining 12 as unknown, chosen from a pool of 23 total
categories. Table I provides our experimental setup regarding
the openness levels. Furthermore, we use the F1-score described
in [52] to evaluate the open-set classification performance. The
F1-score ranges from [0,1], and a higher value indicates the
better performance of an open-set classifier.

B. Person Identification Performance

1) Overall Performance: Table II shows a comparison of
average F1-scores between our approach and state-of-the-art
methods in all scenarios. The compared methods fall into two
categories: those using Doppler images and those using point
clouds for person identification. To assess the effectiveness of
Doppler images, we compare our method with six baseline mod-
els: ResNet [33], DenseNet [34], Nest [38], ViT [35], PiT [36]
and MobileViT [37]. ResNet and DenseNet are standard CNN
architectures commonly used in computer vision tasks, while the
vision transformer-based models represent newer approaches
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Fig. 7. Comparison of PID accuracies at different false alarm rates.

Fig. 8. The PID accuracy confusion matrix(%). Average accuracy scores
greater than 95.36% are achieved for all subjects.

that have shown strong performance across various tasks. We
evaluate four vision transformer-based methods [35], [36], [37],
[38] that use Doppler images for person identification.

The results in Table II show that our method outperforms
all compared methods, achieving F1-score values of 0.93, 0.93,
0.93 and 0.92 on the four datasets. Fig. 7(a) shows that the PID
performance decreases as the false alarm rate is reduced. Our
approach shows greater robustness in identification compared
to alternative methods such as PiT [36] and ResNet [33]. This
highlights that our method is well-suited for radar point clouds
and does not require extensive parameter tuning in the signal
processing algorithm. Furthermore, our approach is the first
radar point cloud-based solution specifically designed for person
identification in occlusion scenarios, unlike PointLSTM [10]
and mmGait [9], which were designed for non-occlusion cases.
As shown in Fig. 7(b), our method outperforms mmGait by at
least 13.41% on various false alarm rates.

2) Confusion Matrix: Fig. 8 illustrates the percentage confu-
sion matrix of identification results. The diagonal of the matrix
displays the classification accuracy for the top 10 individuals
with the highest identification performance. According to these

Fig. 9. (a) Visualization of features collected from three individuals: Person
1, Person 11 and Person 12. (b) Average cosine similarities between features
obtained from different individuals. P1, P11 and P12 correspond to Person 1,
Person 11 and Person 12, respectively.

results, all individual accuracies are above 95.36%, while 7 of
them exceed 96.00%. We count the identification accuracy of all
individuals, and over 90% of the total subjects achieve an identi-
fication accuracy exceeding 87%. These results demonstrate that
mmWave radar measurements are sufficiently sensitive to cap-
ture significant gait features for PID under various occlusions.
Additionally, we observe some people whose identification ac-
curacies are below 90%. For example, the lowest identification
accuracy in our experiment is 81.17% for Person 12, attributed to
the occasional misidentification of Person 12 as Person 11. We
use t-SNE [72] to visualize features extracted from Bi-LSTM
for three individuals: Person 1, Person 11 and Person 12. As
shown in Fig. 9(a), the visualization reveals that some features
of Person 12 overlap with those of Person 11, while remaining
more distant from the features of Person 1. This suggests that the
features of Person 12 are more likely to be misidentified as those
of Person 11, potentially reducing the identification accuracy for
Person 12. Meanwhile, we use the cosine similarity metric to
quantitatively assess the average feature similarity among the
three individuals. As shown in Fig. 9(b), the average cosine
similarity between Person 12 and Person 11 is higher than that
between Person 12 and Person 1, as well as Person 11 and Person
1. This also verifies that the features of Person 12 are more
prone to being misclassified as those of Person 11. These results
suggest that our method has potential for further improvement,
which we plan to explore in future work.

C. Sensitive Analysis

1) Impact of Various Occlusion Scenarios: First, we evaluate
model performance using point cloud data generated by the
time-frequency ridge method [71] across four distinct scenarios.
As shown in Table III, our method consistently achieves the
highest F1-scores compared to other methods. Specifically, it
demonstrates average improvements of 13.71% in the absence
of obstacles, 8.10% with a clothes rack as the obstacle, 12.50%
with a poster board, and 6.80% with a potted plant. These
results highlight the robustness of our approach in handling
environmental variability.

Second, we analyze the performance of our model using
combined point cloud datasets from all four scenarios. As shown
in Fig. 10, the average F1-scores are 0.97 for the empty scenario,
0.89 for the clothes rack scenario, 0.96 for the poster board
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TABLE III
PID F1-SCORES ACROSS OCCLUSION SCENARIOS

Fig. 10. Evaluation of the mmWave-PID F1-scores on four dataset scenarios
(see Section VI-C). Colored bars represent different configurations: the CA-
CFAR algorithm [70] at FARs of 0.02, 0.05, and 0.08, and the time-frequency
ridge algorithm with a penalty factor of 0.05.

scenario, and 0.89 for the potted plant scenario. These findings
further validate the robustness of our method across different
environmental conditions.

Several conclusions can be drawn from Table III and Fig. 10:
(1) The highest average F1-score of 0.96 occurs in the poster
board scenario, where the obstacle completely blocks the sub-
ject. This demonstrates the effectiveness of our radar-based
approach in complex situations where conventional cameras fail.
(2) An average F1-score of 0.97 in the empty scenario suggests
that the OSO-PID system can serve as a viable alternative
to camera-based systems in typical environments. (3) Slightly
lower F1-scores in the clothes rack and potted plant scenarios
reflect the impact of material absorption and reflection properties
on radar signals. Addressing these material-specific challenges
will be a focus of our future research.

2) Impact of Sample Augmentation: To evaluate the effec-
tiveness of our augmentation method, we conduct experiments
on our mmWave radar-based PID method using several aug-
mentation techniques. We compared our method with three
alternatives: PatchAugment [44] and PointWolf [73], both of
which augment point cloud samples through operations such as
rotation and jittering, and Pointflow [61], which focuses on cap-
turing motion information by calculating velocity differences.
As shown in Table IV, all augmentation methods improved
performance compared to using the original data across the four
point cloud datasets. However, our proposed method demon-
strated superior performance in enhancing results across diverse

TABLE IV
PID F1-SCORES FOR DIFFERENT POINT CLOUD AUGMENTATION METHODS

Fig. 11. F1-scores of mmWave-PID for different walking durations, showing
improved performance with longer observation times.

radar point cloud datasets. Specifically, our method achieved
average improvements of 0.08%, 2.76%, 3.33%, and 2.79%,
respectively, outperforming the other augmentation approaches.

3) Impact of Walking Time: Extending radar sensing time
during a person’s walk intuitively increases the likelihood of
accurate identification. We evaluated the F1-score for identi-
fying 23 individuals using sequences of varying durations. As
illustrated in Fig. 11, the F1-score improves significantly as the
number of point cloud frames increases, ranging from 15 frames
(F1-score: 0.77) to 45 frames (F1-score: 0.93), based on point
cloud data generated with the CA-CFAR algorithm at a false
alarm rate (FAR) of 0.08. However, the rate of improvement
diminishes beyond 45 frames.

Balancing real-time prediction needs with high model per-
formance, we conclude that using 45 point cloud frames per
training or testing sample is optimal. This evaluation was ex-
tended to datasets generated using the CA-CFAR algorithm at
FAR values of 0.02 and 0.05, as well as those derived from the
time-frequency ridge method. In all cases, the results followed
a similar trend, further validating this conclusion.

D. Open-Set Recognition Results

In this section, the training dataset exclusively consists of a
predetermined number of training samples for known identities,

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on September 02,2025 at 13:14:10 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: OPEN-SET OCCLUDED PERSON IDENTIFICATION WITH mmWave RADAR 5241

TABLE V
F1-SCORES AT 9 OPENNESS LEVELS ON THE CA-CFAR DATASET [70] WITH FAR 0.05

TABLE VI
F1-SCORES AT 9 OPENNESS LEVELS ON THE MMGAIT DATASET [9]

whereas the test dataset contains test data for all subjects (known
and unknown). Our experiments are conducted using a range of
openness configurations, aiming to mimic real-world scenarios.

1) Overall Performance: In our experiments, we compare
our method with two representative open-set methods: CIP [23]
and OpenMax [21]. The first method leverages Dopper image
obtained from the mmWave radar for the open-set PID task. The
second method is widely regarded as a backbone for open-set
tasks. Note that, due to CIP and OpenMax being designed
for images, we substitute the feature extractor with our PID
network (without the contrastive learning module), keeping
judgment rules unchanged. Furthermore, we perform a compre-
hensive evaluation of our method through ablation experiments,
incorporating judgments based solely on the Weibull model or
the softmax approach, respectively. The results are shown in
Table V.

According to Table V, the comparison results yield several
notable observations. First, we observe a decrease in the perfor-
mance of all algorithms with the level of openness increasing.
This decline is expected since the identification task becomes
more challenging with a larger number of unknown identities.
However, our method consistently achieves the highest perfor-
mance across all levels of openness and gracefully decreases in
comparison to the other two methods. Second, we observe the
efficacy of supervised contrastive learning for the open-set task
through a comparative analysis with OpenMax [21]. The perfor-
mance gap widens as the level of openness increases, reaching
a maximum difference of 0.09 at an openness level of 18.35%.
This indicates that the contrastive learning method effectively
enhances performance for open-set tasks. Third, we observe
that both softmax-based and Weibull model-based methods are
beneficial for the open-set task, especially when the level of
openness is low. For example, in our experiment, we define that
if the maximum softmax probability is less than 0.4, the class

label is assigned as “unknown”. As shown in Table V, when the
level of openness is below 11.36%, the softmax-based method
achieves a performance exceeding 0.8. Hence, we incorporate
two constraints in our method to identify the unknown class. The
first constraint is that the maximum posterior probability is less
than a hyper-parameter denoted as δ, set to 0.4 in our experiment.
The second constraint is derived from the index corresponding
to the maximum posterior probability from the Weibull model,
which is set to 12, indicating the label for unknown classes.

2) Performance on the mmGait Dataset: To verify the ability
of our method, we further perform our method on the public
mmGait dataset [9]. As shown in Table VI, our method demon-
strates superior performance compared to the two methods.
Furthermore, we observe that while the OpenMax [21] method
achieves similar performance to ours at low openness levels, our
method exhibits a more gradual decline in performance as the
openness increases. Concurrently, even though the CIP method
demonstrates a gradual decline in performance, our method
consistently outperforms it at every level of openness.

3) Robustness Performance on Two Datasets: We further
apply our method to various radar point cloud datasets, which
include CA-CFAR-based (FAR: 0.02 and 0.08) and the time-
frequency ridge-based dataset. Based on the results presented
in Fig. 12, it is evident that our method consistently achieves
superior performance compared to the other two methods on
all datasets. Moreover, the results yield several notable ob-
servations. First, we observe that the performance difference
between our method and the compared methods increases with
the level of openness on all datasets. This indicates that our
method more effectively addresses the open-set task compared
to other methods, especially when the level of openness is high.
Second, as shown in Table I, we establish 9 distinct openness
levels. We observe that the performance difference of our method
between the minimum and maximum openness levels achieves
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Fig. 12. Performance on the open-set PID task across 9 levels of openness and
three datasets. Performance declines as openness increases, with our method
consistently outperforming others.

0.11, 0.12 and 0.13, respectively, on the three radar point cloud
datasets. These results demonstrate that the performance of our
method decreases by an average of 1.33% as the degree of
openness increases by approximately 1.35%. This degradation
is less compared to other methods, highlighting the robustness
of our approach across various point cloud datasets and different
openness levels.

4) Performance on Different Distributions: According to
EVT, the distribution of extreme values converges to one of
three forms: the Gumbel, Frechet, or Weibull distribution. To
validate the efficacy of the Weibull distribution, we conducted
evaluations on the mmWave-ocPID and mmGait [9] datasets,
comparing the performance of different EVT distributions.

The results show that the Weibull distribution outperforms
the Gumbel and Frechet distributions on both datasets. For
instance, for the mmWave-ocPID dataset, the Weibull distri-
bution achieved an average F1-score of 0.83 across 9 openness
levels, while the Gumbel and Frechet distributions have scores
of only 0.14. Similarly, using the mmGait dataset, the Weibull
distribution achieved an average F1-score of 0.75, significantly
surpassing the score of 0.12 from the Gumbel and Frechet dis-
tributions. Our evaluation results are consistent with theoretical
works in [66] and [67], both showing the efficacy of the Weibull
distribution for open-set recognition.

E. Discussion and Future Work

By using our mmWave-ocPID dataset, we compare the av-
erage number of points in each radar point cloud to analyze
mmWave signal attenuation across different occlusion scenarios.
Moreover, we use a clothes rack and a potted plant as obstacles,
respectively. Clothes with different materials and thicknesses
are hung on the rack, and the potted plant is placed at different
distances from the radar. A volunteer is instructed to walk be-
hind the obstacle for 4 consecutive minutes to collect mmWave
signals. These signals are further processed by the fast fourier
transform (FFT) [60] and cell-averaging constant false alarm
rate (CA-CFAR) [70] algorithms to generate radar point clouds

Fig. 13. Average number of points in each point cloud: (a) calculated from
point clouds obtained under various occlusion scenarios; (b) from point clouds
using a clothes rack with varying numbers of light clothing (e.g., shirts) as the
obstacle; (c) from point clouds using a clothes rack with varying numbers of
thick clothing (e.g., coats) as the obstacle; and (d) from point clouds using a
potted plant at different distances from the radar as the obstacle.

for analysis, where the false alarm rate in CA-CFAR is set to
0.05. With the data from our new experiments, we analyze the
effects of the number of obstacles, e.g., clothes, as well as the
obstacle distance from the radar on the number of mmWave
radar point cloud data. The results are shown in Fig. 13. As
shown in Fig. 13(a), the average number of points in each point
cloud varies with different occlusion scenarios, confirming that
radar signals experience different levels of attenuation caused by
different obstacles. As shown in Fig. 13(b) and (c), the average
number of points in each radar point cloud decreases as the
number of clothes increases, verifying that a larger obstacle
dimension results in greater signal attenuation. Furthermore,
as shown in Fig. 13(d), as the distance to the radar decreases,
mmWave signals experience greater attenuation, reducing the
number of points in the corresponding point clouds.

In addition, we plan to further improve our method and our
future works include the following: (1) The assembly of an
expansive mmWave radar dataset, featuring a diverse array of
subjects exhibiting various gaits and motion patterns. This com-
prehensive dataset will facilitate an in-depth exploration. (2) The
fusion of mmWave radar with vision-based algorithms [74], to
pave the way toward an extended multi-modality person identifi-
cation framework. (3) The incorporation of incremental learning
and unsupervised learning technologies [75] to accentuate the
differentiation of unknown classes in the unsupervised open-set
problem.

VII. CONCLUSION

In this paper, we investigate the feasibility of employing
mmWave radar for PID in heavily or completely occluded sce-
narios, while exploring the practical open-set PID problem. We
first build a mmWave radar dataset comprising four occlusion
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scenarios with 23 participants. We then propose a novel person
identification approach incorporating a data augmentation strat-
egy and a supervised contrastive learning method. The super-
vised contrastive learning not only enhances the robustness of the
approach but also constructs a compact feature space for the sub-
sequent open-set PID task. Our approach is specifically designed
to handle heavy or even full occlusions that can well compensate
for vision-based PID methods in complex environments. For the
open-set recognition problem, our approach integrates statistical
models with a pre-trained model based on super contrastive
learning. Extensive experiments show that our method achieves
0.93, 0.93, 0.93, and 0.92 PID F1-scores at various occlusion
scenarios, which are superior to the state-of-the-art methods.
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