
1

BCEdge: SLO-Aware DNN Inference Services
with Adaptive Batch-Concurrent Scheduling on

Edge Devices
Ziyang Zhang, Student Member, IEEE, Yang Zhao, Senior Member, IEEE, Huan Li,

Senior Member, IEEE, and Jie Liu, Fellow, IEEE

Abstract—As deep neural networks (DNNs) are increasingly
used in a broad spectrum of edge intelligent applications, it is
often necessary to provide multi-DNN model inference services,
and it is nontrivial for edge inference platforms to simultaneously
deliver high-throughput and low-latency. Such edge devices with
multi-DNN model pose new challenges for scheduler designs.
First, edge devices should be capable of efficiently scheduling
multiple heterogeneous DNN models in order to optimize system
utilization. Second, each inference request may have different
service level objectives (SLOs) to improve quality of service
(QoS). To address these challenges, this paper proposes BCEdge,
a novel learning-based scheduling framework that incorporates
adaptive batching and concurrent execution of DNN inference
services on edge devices. We first propose a shared memory policy
to reduce the memory contention among multiple DNN models.
Afterwards, a utility function is defined to evaluate the trade-
off between throughput and latency. The scheduler in BCEdge
leverages branch-based deep reinforcement learning (DRL) to
maximize utility by 1) optimizing batch size, 2) automatically
identifying the number of concurrent instances for multiple DNN
models, and 3) determining the shared memory configuration
among multiple DNN models. Besides, the lightweight DNN-
based prediction model in BCEdge can achieve SLO awareness
by reducing the performance interference among multiple DNN
models. Our prototype implemented on various edge devices
illustrates that BCEdge enhances utility by up to 37.6% and
reduces memory usage by up to 38% on average, compared
to state-of-the-art schemes, while maintaining the SLO violation
rate within 5%.

Index Terms—Edge Computing, Inference Service, Scheduling,
Reinforcement Learning, Service Level Objective (SLO).

I. INTRODUCTION

DNN inference service systems deployed on cloud servers
provide multiple trained deep neural networks (DNNs) for
users. These systems are usually multi-tenant, meaning that

Ziyang Zhang is with the School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, Heilongjiang 150006, China. E-mail:
{zhangzy,lincy}@stu.hit.edu.cn

Yang Zhao, Huan Li and Jie Liu are with the International Research
Institute for Artificial Intelligence, Harbin Institute of Technology, Shenzhen,
Guangdong 518071, China. E-mail: {yang.zhao,huanli,jieliu}@hit.edu.cn.

Manuscript received 11 Sep 2023; revised 01 Feb 2024; accepted 02 Jun
2024.
This work is partly supported by the National Key R&D Program of
China under Grant No. 2021ZD0110905, No. 2022YFF0503900, and An
Open Competition Project of Heilongjiang Province, China, on Research and
Application of Key Technologies for Intelligent Farming Decision Platform,
under Grant No. 2021ZXJ05A03.
(Corresponding authors: Yang Zhao, Jie Liu.)

each DNN model has one or more concurrent instances to
serve various inference applications, while making full use of
the abundant computing resources on servers. For instance, the
multi-instance GPU (MIG) in NVIDIA Ampere architecture
enables the partitioning of a single NVIDIA A100 GPU into
seven independent GPU concurrent instances. These concur-
rent instances can achieve DNN model inference in parallel,
enabling the GPU to achieve up to 7× utilization with a guar-
anteed quality of service (QoS). Nevertheless, concurrently
executing multiple instances of different DNN models results
in complex interference between DNN models. In addition,
prior work has adopted batching to process requests with lower
inference cost [1], [2], [3]. Batching refers to the aggregation
of multiple requests into a single batch request, with a given
time window [4]. DNN inference service systems process one
batch request at a time, thereby improving system throughput
(e.g., measured in requests per second, rps). Although system
throughput can be improved by increasing the batch size, there
is a challenge, larger batch size leads to longer waiting time for
requests to be processed, which inevitably increases latency.

Edge Device

Vehicle Type
Recognition

Person Activity
Recognition

DNN Model 1

Instance 1

Batch
Queue 1

Batch
Queue 2

Batch
Queue 3

Traffic Sign
Recognition

DNN Model 2

DNN Model 3

Instance N

⋮

Instance 1

Instance M

⋮

Instance 1

Instance Q

⋮

Stop

Turn left

Ambulance

Police car

Walking

Running

⋮

⋮

⋮

Input
Image

Fig. 1. Batching and concurrent inference services on edge devices with video
surveillance application in autonomous driving as an example.

For edge inference serving systems, computility and mem-
ory enhancements provide new opportunities for efficiently
deploying DNN inference systems on edge accelerators (e.g.,
graphics processing unit (GPU), tensor processing unit (TPU),

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

2

1 2 3 4 5 6 7 8

12
8

64
32

16
8

4
2

1
27 24 19 11 9 7 6 4

21 38 49 54 46 38 25 6

23 44 49 53 57 65 51 44

25 51 61 63 65 67 60 54

28 48 51 56 64 69 65 61

36 46 46 51 63 65 63 57

29 34 38 43 54 50 44 40

29 34 38 43 54 50 44 4010

20

30

40

50

60

(a) Throughput (rps)

1 2 3 4 5 6 7 8

12
8

64
32

16
8

4
2

1

237 299 423 498 593 698 788 876

125 129 198 193 297 288 398 712

117 136 145 193 193 194 239 287

57 67 72 96 120 144 168 191

28 34 36 48 61 73 86 98

11 12 18 25 31 38 44 50

6 6 15 16 18 20 24 27

3 3 5 7 9 11 13 15

200

400

600

800

(b) Latency (ms)

Fig. 2. The effects of batching and concurrent inference on (a) system
throughput and (b) end-to-end latency. Throughput is measured as requests-
per-second (rps). The x-axis represents the number of instances of DNN model
(denotes as ci), and the y-axis represents the batch size (denotes as bi). We
use YOLO-v5 [12] on NVIDIA Xavier NX edge device with 8GB DRAM.

and vision processing unit (VPU), etc.). There has been a
tremendous amount of research effort using various DNN
model lightweight techniques (e.g., model pruning [5], knowl-
edge distillation [6], low-bit quantization [7]), aiming at opti-
mizing the inference latency and throughput of edge inference
services. Batch inference for multiple concurrent requests,
however, is also urgent in practice for edge inference services
that not much research effort has focused on.

As shown in Fig. 1, we take the video surveillance appli-
cation deployed on edge devices in autonomous driving [8]
as an example to illustrate the use case scenario of batch
inference on edge devices. To achieve full-scene awareness
on the road, the video surveillance application uses multiple
DNN models, including traffic sign recognition [9], vehicle
type recognition [10], and person activity recognition [11],
to batch video streams captured by on-board cameras in real-
time. Furthermore, each DNN model has multiple instances to
concurrently process video frames with different objectives. In
order to guarantee low-latency inference services while main-
taining throughput performance, it is necessary to investigate
how batching and the number of concurrent instances affect
the latency and throughput performance of inference requests.

Motivating Example: to better understand the performance
impact of batching and concurrent inference, we perform an
experimental study using YOLO-v5 [12] on NVIDIA Xavier
NX edge device. Due to resource constraints on edge devices,
we leverage TensorRT [13] to accelerate the original DNN
model. Fig. 2 reports throughput and latency for different batch
sizes and numbers of concurrent instances. An interesting
observation is that high throughput is achieved when the
batch size (denoted as bi) and the number of concurrent
instances (denoted as ci) both have intermediate values. For
example, when we run YOLO-v5 model on NVIDIA Xavier
NX, the edge inference serving system achieves the highest
throughput (69 rps), when the batch size bi = 8, and the
number of concurrent instances ci = 6, as shown in Fig. 2(a).
The reason why the throughput has diminishing returns as
bi and ci increase is due to resource contention caused by
interference [14] among multiple DNN models. In addition,
the effects of the batch size and the number of concurrent
instances on the inference latency are also investigated and
shown in Fig. 2(b), which shows different behaviors from the

throughput. From Fig. 2, we see that when the batch size
and the number of concurrent instances have excessively high
values, e.g., bi = 128, ci = 8, the throughput is significantly
reduced and the latency is extremely high. Therefore, it is
critical to design an efficient scheduler to 1) co-optimize
throughput and latency, and 2) predict the interference between
multi-DNN model for an edge DNN inference serving system.

Challenges: designing such an edge inference service sys-
tem must address the following challenges. First, inference
requests have latency service level objective (denoted as
SLOi

L) i.e., a bounded response latency (for instance, an
interactive application typically requires a response time less
than 100 milliseconds [4], [15], [16]), to achieve quality of
service (QoS) with low-latency. It is necessary to consider
how to ensure the QoS of inference requests to avoid SLO
violation. SLO violation means that the end-to-end latency of
the inference request exceeds the bounded response latency.
Second, edge devices usually deploy multi-DNN model to
improve system throughput and resource utilization. The inter-
ference between multi-DNN model needs to be considered to
improve system robustness. To this end, we propose BCEdge,
a learning-based, adaptive, multi-tenant scheduling framework
for SLO-aware DNN inference services at the edge. First, a
shared memory policy in BCEdge can effectively reduce mem-
ory usage in order to avoid resource contention among multiple
DNN models. Second, a lightweight neural networks-based
interference prediction model is used to achieve SLO-aware,
thereby alleviating interference between multi-DNN model.
Finally, a learning-based scheduler leverages the branching
architecture to automatically determine the appropriate batch
size, number of concurrent instances for multiple DNN mod-
els, and shared memory configuration among multiple DNN
models, in order to achieve the optimal trade-off between
throughput and latency.

Table I provides a summarized comparison of BCEdge with
prior work. All prior work involves adaptively adjusting the
batch size, either automatically or manually, to achieve high
throughput. Although some prior studies have investigated
multi-DNN model, they did not support the scheduling of
concurrent instances of homogeneous multiple DNN models,
which becomes increasingly important to fully utilize the
computing resources on edge devices. In addition, only TF-
Serving [17] considers model interference. Except for Clip-
per [1] and DeepRT [15], none of the other works consider
strict latency budget. In contrast, our proposed BCEdge ad-
dresses all of the above issues.

To evaluate the BCEdge framework, we implement the sys-
tem and build a prototype. We evaluate the BCEdge prototype
on five heterogeneous edge devices with six representative
DNN models widely used in both computer vision and nat-
ural language processing applications, as shown in Table IV.
Evaluations show that BCEdge improves the trade-off between
throughput and latency by 10%∼62% compared to the state-
of-the-art (SOTA) schemes while reducing memory usage by
up to 62%. Moreover, the SLO violation rate of BCEdge is
kept within 5%.

The main contributions of this paper are as follows:
• We propose BCEdge, a learning-based scheduling frame-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I
COMPARISON WITH PRIOR WORK

Service
Framework

Adaptive
Batching

Concurrent
Instance

Shared
Memory

SLO
Aware

TF-Serving [17] ✓ ✗ ✗ ✗
Triton [3] ✓ ✓ ✓ ✗

Clipper [1] ✓ ✗ ✗ ✓
Prema [18] ✓ ✗ ✓ ✓

DVABatch [19] ✓ ✗ ✓ ✗
Gpulet [4] ✓ ✓ ✗ ✓

DeepRT [15] ✓ ✓ ✗ ✓
Ďelen [16] ✗ ✓ ✓ ✗
BATCH [2] ✓ ✗ ✗ ✓

BCEdge (Ours) ✓ ✓ ✓ ✓

work for adaptive batching and concurrent DNN infer-
ence service on edge devices. This framework is moti-
vated by a real-world case study on the effects of batching
and concurrent inference of DNN models on throughput
and latency performance on edge devices.

• We leverage a branch-based deep reinforcement learning
algorithm to automatically adjust the batch size, the num-
ber of concurrent instances for multiple DNN models, and
the shared memory configuration among multiple DNN
models to co-optimize throughput and latency.

• We propose a shared memory policy to reduce memory
contention among multiple DNN models. In addition,
the lightweight DNN-based prediction model reduces the
performance interference between multi-DNN model.

• Extensive experiments on implemented system prototypes
show that BCEgde outperforms state-of-the-art schemes
in improving the throughput-latency trade-off, reducing
SLO violation rate and memory usage.

The rest of the paper is organized as follows: Section II
presents related work. Section III describes system model and
problem formulation. Section IV illustrates our framework
design in detail. Section V describes our framework implemen-
tation and experimental setup. Section VI reports evaluation
results. Section VII discusses the limitations and future work
of our proposed framework. Section VIII concludes our work.

II. RELATED WORK

A. On-Device Model-Level DNN Inference Service
On-device DNN inference services using single computing

platforms have been extensively studied recently. According to
the level of DNN inference optimization, it can be divided into
coarse-grained model level and fine-grained operator level. In
particular, the on-device model-level DNN inference service
aims to optimize the entire DNN model using a single com-
puting platform. Prior work treats DNN model as an indivisible
scheduling unit, and propose a series of inference serving
frameworks to provide DNN inference services [1], [2], [4],
[15], [17], [19], [20], [21], [22], [23]. Clipper [1], TensorFlow-
Serving [17], MArK [20], DeepRT [15], and BATCH [2]
adopt conventional adaptive batching that use time window
for DNN inference. Ďelen [16] uses early exit mechanism for
DNN models to achieve fine-grained scheduling of inference
requests. None of these existing frameworks offer concurrent
operation of model instances to further improve through-
put. There is also prior work that focuses on SLO-aware

DNN inference service. Gpulet [4] leverages spatio-temporal
sharing of computing resources for multiple heterogeneous
DNN models with latency constraints. Clockwork [23] exploits
predictable execution times to achieve tight SLO. INFaaS [22]
reduces cost and SLO violation, as well as improves through-
put by choosing adequate model variant. PSLO [21] is a
preempting SLO-aware scheduler based on minimum average
expected latency, which aims to trade-off system throughput
and SLO. Unlike the above work, we foucs on reducing the
SLO violation rate (i.e., the proportion of inference requests
that exceed SLO) caused by the interference of multi-DNN
model. In addition, some edge inference frameworks involve
privacy protection [24], [25] and edge-cloud collaborative [26],
[27], respectively. These works are complementary to BCEdge
that can alleviate privacy and resource constraints.

B. On-Device Operator-Level DNN Inference Service

Deep learning frameworks (e.g., TensorFlow and PyTorch)
abstract a particular DNN model as a directed acyclic graph
(DAG) when executing DNN inference [28]. DAG consists
of nodes and edges, and the nodes represent operators (var-
ious operations in the DNN model), such as convolution,
pooling, batch normalization, activation, etc. Edges represent
dependencies between operators. The on-device operator-level
DNN inference services aim to improve QoS by optimizing
the operators of the DNN model using a single computing
platform. Except for model-level inference services, prior work
also focuses on optimizing the operator-level scheduling of
DNN models to enhance the QoS of model service [14],
[18], [29], [30], [31]. REEF [29] adopts a parallel mechanism
based on dynamic kernel padding to improve throughput.
VELTAIR [14] proposes an adaptive operator-level compila-
tion and scheduling framework to achieve efficient resource
usage, and reduces interference-induced performance loss.
PREMA [18] proposes a predictive multi-task scheduling
algorithm to achieve high-throughput. Abacus [30] lever-
ages overlap-aware latency prediction model and determin-
istic scheduling of overlapped DNN operators to improves
throughput while maintaining QoS. These works are also
complementary to BCEdge that enable higher throughput and
lower latency.

C. DNN Inference Service in Edge-Cloud Collaboration

On-device DNN inference service is difficult due to re-
source constraints on edge devices. To this end, prior work
leverages edge-cloud framework to facilitate collaborative in-
ference services. Edge-Cloud collaboration executes inference
by reasonably allocating sub-models of DNN between cloud
servers and edge devices [32]. This computing paradigm
enables DNN inference to provide high QoS in a real-time
responsive manner. TVW-RL [33] exploits various temporal
resource usage patterns of time-varying workloads using a
deep reinforcement learning (DRL) approach, to improve
utilization in real production traces. Likewise, KaiS [34], A3C-
R2N2 [35], MILP [36], A3C-DO [37], and MFRL [38] pro-
posed different multi-agent DRL-based scheduling algorithms,
to optimize throughput, latency, energy consumption, cost, etc.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

4

TABLE II
NOTATIONS

Notation Description
xi The i-th inference request
mi The i-th DNN model type
di Input data shape for i-th inference request
SLOi

L Latency service level objective of the i-th inference request
ti The i-th scheduling time slot
bi Batch size for i-th DNN model
ci Number of concurrent instances for i-th DNN model
si Shared memory configuration among multiple DNN models
U Utility function
Di The input data size of i-th inference request
Ri The output data size of i-th inference request
B Network bandwidth between IoT devices and edge devices
Ci The computility of edge devices
fi The clock frequency of edge devices
liend End-to-end latency for i-th inference request
Ti Throughput at i-th time slot ti
oi memory usage for i-th inference request
ei Parameter space for i-th DNN model
gi Runtime space for i-th DNN model
st State in DRL at time slot ti
at Action in DRL at time slot ti
rt Instant reward at time slot ti
Fb Features of batch size
Fc Features of concurrent instances
Fs Features of shared memory configuration

MCDS [39] leverages a tree-based search strategy and a DNN-
based prediction model to optimize QoS. Similar to MILP
[36], DeEdge [40] proposes D-Deads, a distributed greedy
scheduling algorithm with task-deadline, which maximizes
throughput while minimizing latency. Note that the above
work only schedule individual tasks one by one, ignoring
the benefits of batching and concurrent inference. Inspired
by above work, BCEdge can be extended to an edge-cloud
collaborative inference framework to further optimize specific
objectives.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system models including the DNN
inference request model, the service scheduling model and the
end-to-end latency model are formulated and discussed. After-
wards, an optimization problem is formulated to include the
effects of the batch size, the number of concurrent instances
for multiple DNN models and shared memory configuration.
Table II provides the key notations used in this paper.

A. System Models

Request Model: suppose there are multiple IoT devices
(e.g., cameras, drones, smartphones, etc.) sharing the re-
sources of edge devices. Before task scheduling, IoT devices
generate a series of inference requests with DNN model type
mi, input data shape di, and latency service level objective
SLOi

L. The i-th inference request xi, therefore, can be denoted
as xi = {mi, di, SLO

i
L}. BCEdge maintains a batch of

requests queue for each DNN model, and supports dynamic
batching by aggregating multiple inference requests with same
DNN model into corresponding batch request queue. Mean-
while, BCEdge creates multiple instances for each DNN model
(e.g., concurrent instances ci), since it is critical for edge
devices with GPUs to leverage both batching and concurrent

inference to improve throughput. The model zoo in BCEdge
backend executes DNN inference from batch request queue,
and returns prediction result.

Scheduling Model: since the SLO is different for each
request, a fixed scheduling time slot is inappropriate. In
addition, it is impractical to specify scheduling time slot for
each request individually, which significantly increases system
overhead, i.e., the scheduling latency at runtime. Therefore,
we set the i-th scheduling time slot ti as the ratio of the sum
of SLOi

L for a batch of requests to the number of concurrent
instances for multiple DNN models, which can be denoted as:

ti =

bi∑
i=1

SLOi
L/ci (1)

where bi is the batch size, and ci is the number of concurrent
instances for multiple DNN models. In this way, BCEdge is
enabled to guarantee the SLO of each request, and provides
efficient inference services via batching and concurrent infer-
ence. Note that BCEdge starts the next scheduling immediately
after finishing the current scheduling to reduce the GPU idle.

End-to-end latency Model: end-to-end latency involves the
communication time between IoT devices and edge devices, as
well as model inference time, which consists of the following
components:

• request transmission time litrans: the time that IoT devices
send the i-th inference request to edge devices via the
network, which depends on network bandwidth and input
data size:

litrans =
Di

B
, (2)

where B is the network bandwidth between IoT devices
and edge devices. Di is the input data size of i-th
inference request.

• request queuing time lique: the time that a request is
blocked on the request queue until it is scheduled. We
utilize the M/M/1 queuing model to define the queuing
time of inference requests. Assume that the arrivals of
requests are independent of each other, and the interval
between arrival times follows a Poisson distribution with
parameter λ. The service time of requests follows a
negative exponential distribution with parameter µ, and
the number of servers is 1. Therefore, the average queuing
time of a request can be modeled as follows:

lique =
ρ

µ− λ
, (3)

where ρ = µ/λ is the service intensity per unit time.
• DNN inference time liinfer: the time that edge device

executes model inference, which depends on input data
size, the computility and clock frequency of edge devices,
batch size, as well as number of concurrent instances.

liinfer =
Di · Ci

fi · bi · ci
, (4)

where Ci is the computility of edge devices. fi is the
clock frequency of edge devices.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

5

• result response time lirsp: the time that edge devices
transmit results to IoT devices via the network, which
depends on network bandwidth and output data size:

lirsp =
Ri

B
, (5)

where Ri is the data size of the return result for the i-th
inference request.

Overall, the end-to-end latency liend can be denoted as:

liend = litrans + lique + liinfer + lirsp (6)

System Throughput Model: system throughput, as one of
the SLO, refers to the number of requests that the inference
service system can process within a time window (e.g.,
measured in requests per second, rps). Increasing throughput
means more inference requests can be processed within the
same time window. In our work, system throughput (denoted
as rps) depends on batch size (bi), the number of concur-
rent instances for multiple DNN models (ci), and end-to-end
latency (liend), which can be formulated as follows:

rps ∝ bi · ci
liend

(7)

where ∝ means that system throughput (rps) is proportional to
batch size (bi), the number of concurrent instances for multiple
DNN models (ci), and inversely proportional to end-to-end
latency (liend).

B. Problem Formulation

Our objective is to co-optimize both throughput and latency
for each DNN model by automatically exploring the feasible
set of batch size, the number of concurrent instances for mul-
tiple DNN models and shared memory configuration among
multiple DNN models while guaranteeing SLO. Inspired by
the co-adaptive scheduler named Pollux [41], we propose a
utility function to evaluate the trade-off between throughput
and latency:

U(Ti, Li) = log(Ti(bi, ci, si)/
Li(bi, ci, si)

(
∑bi

i=1 SLO
i
L)

) (8)

where si indicates the shared memory configuration among
multiple DNN models (see Section IV-D for details). The
throughput of the i-th scheduling time slot ti can be denoted as
Ti(bi, ci, si), and Li(bi, ci, si) is the actual end-to-end latency
of the i-th scheduling time slot ti.

∑bi
i=1 SLO

i
L denotes the

ratio of the sum of SLOi
L for a batch of requests to the number

of concurrent instances for multiple DNN models.
Meanwhile, inference service system must consider the

memory capacity of edge devices, denoted as Oi, as well as
the latency constraints. Therefore, the optimization objective
is formulated as follows:

max
bi,ci,si

U(Ti, Li)

s.t. oi ≤ Oi

Li ≤
bi∑
i=1

SLOi
L

(9)

where oi is the memory usage of the i-th inference request.

IV. SYSTEM DESIGN

A. System Overiew

We propose BCEdge, an adaptive batching and concurrent
inference service framework for edge devices. The scheduler
in BCEdge aims to allocate a moderate batch size, number
of concurrent instances, and shared memory configuration
among multiple DNN models for each inference request, while
maintaining the SLO boundary. Unlike prior work that only
considers a subset of three dimensions [1], [15], we propose a
scheduler that fully explores three dimensions to better tradeoff
throughput and latency.

Fig. 3 shows an overview of proposed scheduling frame-
work, namely BCEdge, which consists of dynamic batching
(Section IV-B), concurrent instance (Section IV-C), shared
memory for multiple DNN models (Section IV-D), learning-
based scheduler (Section IV-E), and SLO-aware interference
predictor (Section IV-F). BCEdge first ❶ maintains a batch
request queue for each DNN model. The requests with dif-
ferent DNN models generated by IoT devices are merged to
send the corresponding batch request queues. The performance
profiler ❷ periodically collects information (e.g., resource
utilization, system throughput and end-to-end latency) for
each DNN model. Meanwhile, the SLO-aware interference
predictor ❸ analyzes the potential interference caused by
concurrent instances between multiple DNN models, which
guides the scheduler to make more robust decisions. The
learning-based scheduler then ❹ identifies the optimal batch
size, the number of concurrent instances for multiple DNN
models, and shared memory configuration among multiple
DNN models by leveraging profiled information. Finally, the
runtime engine ❺ executes concurrent DNN inference service
with batching on edge devices.

\⋮

Batching
queues

Requests

DRL
Scheduler

⋮

Batch size

ConcurrencyBCEdge
IoT devices

Runtime
Engine

Resource utilization

Latency

Pr
ed

ic
to

r

Edge Accelerator

DNN model zoo

⋮

Shared memory

Fig. 3. Overview of the proposed scheduling framework for DNN inference
services.

B. Dynamic Batching

BCEdge enables dynamic batch inference by allowing a
single request to specify a batch of inputs. Inference for a
batch of inputs is executed concurrently, which is important
for GPUs as it can improve throughput significantly. As Fig. 4
shows, dynamic batching first maintains a batch request queue
separately for each DNN model. Dynamically created batches
then are dispatched to all concurrent instances configured
for each DNN model, and multiple batch request queues are
concurrently executed. More precisely, dynamic batching adds
each request to the corresponding batch request queue based

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

6

on the order of arrival. Meanwhile, it sorts the priority of
each inference request based on SLO, the shorter the SLO,
the higher the priority. Dynamic batching aggregates multiple
requests into one large request, and dispatches the batch
requests to multiple slots of each DNN model at runtime.
Note that each slot is a model instance. Additionally, the batch
requests are scheduled in the order of arrival if they have the
same priority.

Dynamic
Batching

⋮

Runtime
Model 1

⋮

Model N

⋮

Request Queues

⋮
⋮

⋮

queue 1

queue 2

queue n

slot 1 slot n

slot 1 slot n

Fig. 4. Illustration of dynamic batching.

C. Model Instance Concurrency

BCEdge enables multi-DNN model and multi-instance of
the same DNN model to execute in parallel, and the DNN
models executed on CPU are handled similarly by BCEdge.
Fig. 5 shows the pipeline of three DNN models executing
multi-instance in parallel, and each DNN model creates three
instances. Suppose BCEdge is not processing any requests
currently. When the first three requests arrive at the same time
(one for each model), each instance of the three DNN models
will process a corresponding request. BCEdge then dispatches
these concurrent instances to GPU immediately, and the hard-
ware scheduler starts processing the corresponding inferences
in parallel. Note that the first three inference requests are
immediately executed in parallel, while subsequent inference
requests have to wait until the corresponding previous requests
are completed.

instance 1 instance 2model 1

model 2

model 3

req.1/2/3

instance 2

instance 1

instance 1

req.1/2 req.3

instance 3

instance 3

instance 3

instance 2

req.2 req.1/3
time

Fig. 5. Illustration of concurrent instance.

D. Shared Memory Policy for Multiple DNN Models

DNN model inference is computationally intensive, which
requires high-overhead GPU memory space, including the
following four components: uncontrollable space, user data,
model parameters, and runtime space. Specifically, the uncon-
trollable space refers to the space allocated by the operating
system, such as the memory space occupied by the context
of each process in the hardware accelerator. User data is the
user-specified memory space, such as the input and output of
the DNN model. Model parameters refer to the memory space
occupied by the parameters of the DNN model, which need to
be loaded into GPU memory for inference. The runtime space

is the memory occupied by the operators of the DNN model
during calculation.

In multi-DNN model concurrent inference service, the in-
evitable memory contention among multiple DNN models can
cause serious performance interference. Importantly, unlike
cloud server-level GPUs, edge GPUs are resource-constrained
and lack effective memory management mechanisms. To ad-
dress these challenges, we propose a shared memory policy for
multiple DNN models to reduce memory usage. As mentioned
before, the number of concurrent instances for i-th DNN
model is ci. The parameter space and runtime space of each
DNN model are denoted as ei(i = 1, 2, · · · , E) and gi(i =
1, 2, · · · , G), respectively. Note that the uncontrollable space is
automatically allocated by the operating system, which cannot
be modified. In addition, the memory space occupied by user
data is negligible. Thus, uncontrollable space and user data
are not considered.

The shared memory policy for multiple DNN models si can
be formalized as follows:

si =

{
ei + gi ∗ ci, i = 1∑M

i=1 ei +max(gi ∗ ci), i > 1
(10)

where i is the number of DNN models. The first case considers
multi-instance concurrency for a single model (i.e., i = 1). For
instance, model m1 creates x instances, the parameter e1 of
DNN model m1 only needs to be allocated once, and g1 is
shared by these x instances. The second case considers multi-
instance concurrency for multiple DNN models (i.e., i > 1).
For instance, there are three DNN models, and the computing
pipeline is m1 → m2 → m3. Among them, model m1 creates
2 instances, model m2 creates 3 instances, and model m3

creates 4 instances. The total memory usage, therefore, is e1+
e2 + e3 + max(g1 ∗ 2, g2 ∗ 3, g3 ∗ 4). In this way, we can
effectively reduce memory usage to avoid memory contention.

E. Learning-based Scheduler

Compared with traditional heuristic approaches, deep rein-
forcement learning (DRL) has great advantages in processing
complex decision problems, which can be applied to search
spaces with high-dimensional. Thus, the problem, introduced
in Eq. (9), can be converted to a DRL problem to solve. The
agent in DRL generates actions (decisions) by continuously
interacting with the environment, and the interaction process
is usually modeled by a Markov decision process (MDP).
An MDP consists of the following state, action, transition
probability and reward.

• State: the state s reflects the state characteristics of the
environment, and all states constitute the state space S
(s ∈ S). At each scheduling time slot ti, the agent in
DRL constructs a state st(st ∈ S) to periodically collect
request information and the resource utilization of edge
devices. st consists of a three-tuple: (I) the DNN model
type mi. (II) the input date shape di. (III) the SLO of
each requests SLOi

L.
• Action: the action a is the behavior taken by the agent,

and all actions constitute the action space A (a ∈ A). The
action of the agent aims to identify optimal batch size bi,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

7

the number of concurrent instances for multiple DNN
models ci, and available shared memory configuration
among multiple DNN models si, given specific DNN
model m. Thus, the action at(at ∈ A) at scheduling time
slot ti can be denoted as at = (bi, ci, si).

• Transition probability: the transition probability p is the
probability distribution of the agent transitioning from the
current state s to the next timestamp state s′, satisfying∑

s′∈S p(s′|s, a) = 1.
• Reward: the reward is a scalar value that the environment

feeds back to the agent after the agent performs an action
according to the policy π, which is related to current
state, current action and the state of the next timestamp.
The agent in DRL aims to maximize the accumulated
expected reward E

[∑T
t=0 γ

trt

]
, where rt is the instant

reward at time slot ti. The objective of our BCEdge
design is to maximize the proposed utility in Eq. (8) that
achieves the optimal trade-off between throughput and
latency. Therefore, we propose a novel reward function
ri(t) for each request i as follows:

ri(t) =

{
U(Ti, Li), Li ≤

∑bi
i=1 SLO

i
L, oi ≤ Oi

e−Li·oi , otherwise
(11)

where the agent in DRL is triggered by SLO violation. This
is because the reward function in Eq. (11) depends on SLO
violation. The first case indicates that when the latency of
the current inference request is within the specified latency
constraints (i.e., SLOi

L) and the memory usage does not
exceed memory capacity (i.e., Oi), we calculate the reward
based on the inference latency of the request and the system
throughput, and the reward function corresponds to the utility
function in Eq. (8). For the second case, when the latency
and/or memory of the current inference request exceeds,
we use an exponential function to define the reward, which
decreases as the inference latency increases.

The purpose of DRL is to identify an optimal policy
π∗ = argmaxa Q

∗(s, a) to maximize the long-term cumu-
lative expected return by using the optimal Q-function (Q∗)
to quantify this reward

Q∗(s, a) = Eτ∼p(τ)[r(s, a) + γmaxa′ Q∗(s′, a′)] (12)

where the Q-function Q(s, a) is the reward achieved by execut-
ing action a at state s, which can leverage neural network, such
as deep Q-network (DQN) [42], to approximate the optimal
Q-function Q∗(s, a), and γ is a discounting factor.

Search Space Challenge: Note that the scheduling in
BCEdge is more complex compared with prior work (e.g.,
TF-Serving [17], Clipper [1], and DeepRT [15]), since it
involves batching, concurrent inference, and shared memory
configuration multiple DNN models. Therefore, the trade-off
configuration would sit on the sweet spot in the search space
built upon the three dimensions, which creates a huge search
space. However, we find that it is inefficient to directly apply
traditional DRL to the huge three dimensionsal scheduling
space in BCEdge. We suppose that M DNN models exit
and each DNN model m has bi batch size, ci the number

of concurrent instances for multiple DNN models, and si
shared memory configuration among multiple DNN models.
In total,

∐M
m=1 bi · ci ·si different combinations (actions) need

to be considered at each timestamp. Searching for an optimal
policy in such a huge action space is time-consuming, which
is unacceptable for online inference services on edge devices.

Branch DRL-based scheduling algorithm: A key insight
to address this problem is that through an efficient scheduling
strategy design. We propose to decouple the reward explo-
ration for each scheduling dimension, so that we can reduce
the complexity of the action space via parallel scheduling. In
this way, the output dimension can be reduced from the multi-
plication

∐M
m=1 bi ·ci ·si to summation

∑M
m=1(bi+ci+si). In

BCEdge, we employ a branch-based structure [43] to achieve
a learning-based scheduler.

As Fig. 6 depicts, we first use a shared feature extractor
implemented by a fully connected neural layer with 256 neural
units, i.e., the larger gray trapezoidal in Fig. 6, to extract
common features F between different dimensions of the input
state. Then, a fully connected neural layer with 64 neural units
(i.e., the smaller gray trapezoid in Fig. 6) is used for evaluation
of the state value. Meanwhile, these common features are
then fed into different feature extraction branches implemented
by a fully connected neural layer with 64 neural units, i.e.,
the smaller gray trapezoidal in Fig. 6, to generate a series
of features (Fb, Fc, Fs), representing the features of batch
size, the number of concurrent instances for multiple DNN
models, and shared memory configuration among multiple
DNN models, respectively. Each branch corresponds to a
dimension in the three dimensions action space. In addition,
the common features serve as an additional branch to estimate
the state value function (V-function) of the state, where V-
function is the expectation of Q(s, a) about action a. The state
value (V-value) is aggregated with the features of different
branches to output the rewards of each branch. Finally, the
optimal joint estimate of the distributed actions is obtained.
Such parallel design essentially copes the trade-off between
latency and optimality of agent exploration.

We extend Branching Dueling DQN [43] into our pro-
posed scheduling algorithm. Similar to Dueling DQN [44],
Branching Dueling DQN [43] is also an approximation to the
optimal Q-function, which decomposes the optimal Q-function
Q∗(s, a) into an optimal V-function V ∗, where V ∗(s) =∑

a∈A π(a|st) · Q(st, a), and an optimal advantage function
A∗, where A∗ = Q∗(s, a) − V ∗(s), aiming at improving the
learning efficiency of DQN [42].

Formally, for an action with d dimension (d ∈ 1, 2, · · · , n),
the Eq. (12) transforms as follows:

Q∗
d(s, ad) = V ∗(s) + (A∗

d(s, ad)−
1

n

∑
a′
d∈Ad

Ad(s, a
′
d)) (13)

where |Ad| indicates n discrete sub-actions.
We alleviates the overestimation of DQN by leveraging two

networks (i.e., Q-network and target Q-network), which can
be formulated as follows:

yd = rd + γ
1

n

∑
d

Q−
d (s

′, argmax
a′
d∈Ad

Qd (s
′, a′d)) (14)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

8

Joint ActionState

Q-Values
Concurrency

Q-Values
Batch Size

Q-Values
Shared Memory

Fe
at

ur
e

1
Fe

at
ur

e
2

Fe
at

ur
e

3

⋯
argmax

Shared Feature

State Value

256
128

64

64

64

64

Fig. 6. Illustration of proposed branch DQN-based scheduler design with the parallel branches to determine different attributes. The gray trapezoids indicate
the weights of the fully connected neural layers and the size of each layer (i.e. number of neural units) is indicated.

where yd is the target Q-value with dimension d, and
Qd(s

′, a′d) is the Q-value estimated by neural network.
We train Branching Dueling DQN by aggregating dis-

tributed temporal difference (TD) errors across branches. The
loss function can be formulated as follows:

L = E(s,a,r,st+1)∼D[
1

n

∑
d

(yd −Qd(s, ad))
2] (15)

Algorithm 1 provides the overall procedure of scheduling.
The scheduler first receives the information of DNN model and
resource utilization for each inference request. Before each
scheduling time slot, all networks are initialized. For each
scheduling time slot, the scheduler first checks each request
queue. If the request queue is empty, it pushes incoming
requests into the request queue (line 7). The branch network
proposed in Fig. 6, is used to extract the features of each
dimension and calculate the respective Q-value (line 9∼11).
The scheduler selects a joint action at(bi, ci, si) based on
policy π with probability ϵ-greedy (line 12). Afterwards, is
executes action at and observes reward using Eq. (8) (line 13).
Meanwhile, the state changes from st to st+1, and the current
state, action, reward and the next state are stored as a action
transition in the replay buffer D. The batch request queue
are pulled from the batching slot when the batch requests
are completed (line 16). Next, we calculate the Q-Value
and target Q-Value of each dimension separately by random
sampling (line 17∼19). The scheduler updates the parameters
of all networks, and repeat the above process (line 21∼24)
until the end of the iteration. Finally, the scheduler outputs
the optimal batch size, the number of concurrent instances
for multiple DNN models, and shared memory configuration
among multiple DNN models.

F. SLO-Aware Interference Predictor

Concurrent inference of multi-DNN model or multi-instance
of a single model can process more requests simultaneously
to improve throughput. However, an important challenge is
the performance interference caused by multi-DNN model
concurrent inference. As shown in Fig. 2, we observed that
concurrent inference significantly increases latency compared
to executing a single model independently, as multi-DNN

Algorithm 1: Learning-based scheduling algorithm
Input : The specific information (mi, di, SLO

i
L) of each inference

request xi

Output: batch size bi, the number of concurrent instances for
multiple DNN models ci and shared memory configuration
among multiple DNN models

1 si Initialization Q-network Q with random weights θ;
2 Initialization target Q-network Q̂ with weight θ− = θ;
3 Initialize an empty replay buffer D ← ∅;
4 for each scheduling time slot ti do
5 for each environment step do
6 if request queue is empty then
7 Push request xi to batch request queue;
8 end
9 Use a shared feature extractor to extract common features

F of the input state;
10 F derived features (Fb, Fc, Fs) for each dimension via

different feature extraction branches;
11 F is aggregated with (Fb, Fc, Fs) for each dimension to

output the Q-value for each dimension;
12 Select a random joint-action tuple at(bi, ci, si) based on

policy π with probability ϵ-greedy;
13 Execute action at and observe reward rt (at | st) using

Eq. (11);
14 st+1 ∼ p (st+1 | st, at) ;
15 D ← D ∪ {(st, at, r (st, at) , st+1)};
16 Pull current request queue from batching slot si;
17 Sample random minibatch of transitions (st, at, r(st, at))

from D;
18 Calculate the target Q-value yd using Eq. (14);
19 Calculate the branch Q-value Qd(s

′, a′d) using Eq. (13);
20 end
21 for each gradient step do
22 Update the parameters of Q-network parameter θ using

Eq. (15);
23 Update the parameters of target Q-network θ− ← θ every

T steps;
24 end
25 end

model compete for the shared resources on edge devices,
especially the memory. In this case, model interference may
causes the scheduler to make incorrect schedules, and possibly
violates SLO.

The key to mitigating interference is accurately predict-
ing latency increase when multi-DNN model inference are
executed concurrently on a single GPU. Fig. 2 reveals that
the number of concurrent for YOLO-v5 [12] model has a
nonlinear relationship with the end-to-end delay, the prediction

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

9

model based on linear regression, therefore, cannot accurately
achieve interference-aware. To confine the interference effect,
we leverage a lightweight two-layer neural network (NN)
with negligible overhead as the interference prediction model,
which directly learns the interference latency of multi-DNN
model concurrent inference on a single GPU. As shown
in Fig. 7, the simple yet effective interference prediction
model based on NN leverages historical latency and memory
utilization as the input of the neural network. The interference
prediction model then compares the estimated latency of the
neural network output with the actual latency provided by the
performance profiler in BCEdge. The neural network is trained
by minimizing the standard deviation between actual latency
and estimation latency, which aims to improve the stability of
the scheduler and reduce the SLO violation rate.

estimated
latency

training loss

historical latency

memory utilization
current latency

Fig. 7. SLO-aware interference predictor based on neural network.

V. IMPLEMENTATION

BCEdge Prototype: we implement the prototype of BCEdge
using the runtime backend of Triton [3], a inference serving
system provided by NVIDIA. Table III reports the detailed
description of the evaluated inference system and the GPU
specifications used. The table also provides the versions of
operating system, CUDA, runtime, and deep learning (DL)
framework. As Fig. 8 shows, we use two IMX cameras and
a micorphone as IoT devices. Poisson distribution is used to
model the arrival of events for many applications. For gener-
ating a realistic request arrival pattern, we sample inter-arrival
time for each model from a Poisson random distribution, which
are widely used to evaluate DNN inference serving services,
based on previous literature [4], [14], [29], [45], [46]. The
request arrival rate is set to 30 requests per second (rps),
which are randomly distributed across all instances of each
DNN workload. Unless otherwise indicated, all evaluations
are reported on an NVIDIA Xavier NX edge GPUs.

NVIDIA
Xavier NX

IMX
Camera

Microphone

Fig. 8. BCEdge prototype implemented on NVIDIA Xavier NX edge devices.
We use two IMX cameras and a micorphone as IoT devices.

DNN Workloads: we use six representative DNN models
from three popular DNN families to process image and speech

TABLE III
THE EVALUATED SYSTEM SPECIFICATIONS

Edge device NVIDIA Jetson Xavier NX
Operating system Ubuntu: 18.04.6 (kernel 4.15.0)

Software CUDA 10.2 and TensorRT 8.2 [13]
CPU 6-core Carmel@1.4GHz ARMv8.2 64-bit
GPU 384-core Volta GPU with 48 Tensor Cores

DRAM 8GB 128-bit LPDDR4x 59.7GB/s
Runtime NVIDIA Triton Inference Server 2.19.0 [3]

DL framework PyTorch 1.10

TABLE IV
LIST OF DNN MODELS USED IN THE EVALUATION

Model Input Shape SLO (ms) Accuracy (%)
YOLO-v5 (yolo) 3x224x224 138 44.8

MobileNet-v3 (mob) 3x224x224 86 67.3
ResNet-18 (res) 3x224x224 58 72.4

EfficientNet-B0 (eff) 3x224x224 93 77.1
Inception-v3 (inc) 3x224x224 66 76.5
TinyBERT (bert) 1x14 114 78.4

data. Specifically, we use YOLO-v5 [12] for object detec-
tion tasks, MobileNet-v3 [47], ResNet-18 [48], EfficientNet-
B0 [49] and Inception-v3 [50] for image classification tasks,
and TinyBERT [51] for speech recognition tasks. Additionally,
we use NVIDIA TensorRT [13], a high-performance DNN in-
ference optimization library for better batching and concurrent
inference. The input shape, SLO and accuracy of each DNN
model is listed in Table IV.

Training Details: our proposed Algorithm 1 is based on
the branching dueling DQN [43] framework. All networks are
trained using the Adam optimizer with a learning rate of 10−4.
Each network has a two-layer ReLU neural network with 128
and 64 hidden units, respectively, and the replay buffer size
is set to 106. The target Q-network is updated every 103 time
steps. We train it offline on a workstation using four NVIDIA
GeForce GTX 3080 GPUs with a mini-batch size of 512 and
a discount factor γ = 0.99 for 500 epochs, and deploy the
trained algorithm online to edge devices for evaluation.

Baselines: As baselines, we compare against three DNN
inference service systems, all listed in Table I. The baselines
are composed by combining different approaches (i.e., adap-
tive batching, concurrent instance, shared memory, and SLO
aware). As discussed in Section I, existing DNN inference ser-
vice systems mainly focus on enabling cloud-based inference
service instead of providing edge inference service as BCEdge
does. Consequently, we compare BCEdge against DeepRT [15]
and Ďelen [16], which enable DNN inference service at the
edge, to evaluate the effectiveness of our proposed approach.
In addition, we also use BATCH [2] in Table I as a baseline,
which is a cloud-based DNN inference serving framework that
enables adaptive batching and SLO awareness. For fair com-
parison, we deploy DeepRT [15],Ďelen [16], and BATCH [2]
on the same edge devices as the BCEdge environment. Details
for the three baselines are as follows:

• DeepRT [15]: a soft real-time scheduler with dynamic
batching using earliest-deadline-first (EDF) scheduling
algorithm at the edge. We extend DeepRT to enable
TinyBERT DNN model for speech recognition tasks.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

10

• Ďelen [16]: a flexible and adaptive DNN inference service
system for multi-tenant edge devices. Ďelen leverages
multi-exit DNNs, i.e., a mechanism that enables early
exit at different points during DNN inference, to achieve
fine-grained control over inference requests.

• BATCH [2]: a DNN inference service framework with
adaptive batching using an optimizer based on an analyt-
ical model to provide SLO guarantees.

VI. EVALUATION

A. Evaluation Metrics

We use our proposed utility function defined in Eq. (8),
overall throughput, end-to-end latency, and SLO violation rate
as our evaluation metrics.

• Utility: this metric measures the trade-off between overall
throughput and end-to-end latency, which represents the
behavior of BCEdge that tends to improve throughput
while ensuring SLO.

• Overall Throughput: this metric represents how many
inference requests from users can BCEdge serve on the
target edge device (i.e., measured in requests per second,
rps).

• End-to-end Latency: this metric measures the execution
time for each inference request with latency constraints
(i.e., SLO).

• SLO violation Rate: this metric measures the proportion
of inference requests that exceed SLO within a time
window.

B. Overall Performance

We first evaluate the trade-off performance (i.e., the pro-
posed utility in Eq. (8)) of BCEdge in terms of throughput
and latency. Fig. 9 reports the normalized utility of six DNN
models in Table IV. It can be observed that our proposed
BCEdge consistently outperforms all baselines for all DNN
models. Specifically, the utility of BCEdge is 48%, 27% and
18% higher than DeepRT, BATCH and Ďelen on average,
respectively. The lower-utility of both DeepRT and BATCH is
due to the lack of concurrent inference, although they leverage
adaptive batching to improve throughput. Since the multi-exit
mechanism in Ďelen can improve throughput while reducing
latency, it has a better trade-off between throughput and
latency than batching and concurrent inference. In contrast,
BCEdge, on the one hand, fully explores the three dimensions
search space consisting of batch size, the number of concurrent
instances for multiple DNN models and shared memory con-
figuration among multiple DNN models by efficient scheduling
using branch DRL-based. On the other hand, the shared
memory policy in BCEdge can significantly reduce memory
usage, thus achieving an optimal trade-off between throughput
and latency.

We next illustrate that how BCEdge executes inference on
six DNN models for a duration of 3,000 seconds in terms of
throughput and latency, respectively. Fig. 10 shows the stacked
graph of the accumulated throughput of each DNN model, and
Fig. 11 reports the end-to-end latency of each DNN model over

N
or

m
. U

til
ity

0
0.2
0.4
0.6
0.8

1

yolo mob res eff inc bert

DeepRT BATCH Delen BCEdge

Fig. 9. Comparison of the normalized utility with six DNN models.

time. We can see that both the throughput and latency increase
asymptotically between 0 and 1,500 seconds, which indicates
that BCEdge is continuously optimizing our proposed utility
function to identify the appropriate batch size, the number
of concurrent instances for multiple DNN models and shared
memory configuration among multiple DNN models for each
DNN model. From 1,500 seconds on, both the throughput and
latency are saturated, indicating that BCEdge has successfully
fond the optimal joint actions in three dimensions search space
within the constraint of memory and SLO. In addition, we note
that BCEdge tends to sacrifice higher throughput for lower
latency to achieve better utility.

Th
ro

ug
hp

ut
 (r

ps
)

Time (sec)

0

20

40

60

0 500 1000 1500 2000 2500 3000

yolo bert eff mob inc res

Fig. 10. Comparison of throughput with six DNN models. The scheduling
duration of each DNN model for 3,000 seconds.

0 1000 2000 3000
Time (sec)

0

25

50

75

100

125

Av
g.

 L
at

en
cy

 (m
s)

yolo
bert

eff
mob

inc
res

Fig. 11. Comparison of latency with six DNN models. The scheduling
duration of each DNN model for 3,000 seconds.

C. Evaluation of Scalability

We additionally evaluate other four edge devices to evaluate
the scalability of BCEdge. Table V provides the specific
parameters of these heterogeneous edge devices compared
with NVIDIA Xavier NX. We evaluate the scalability of

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

11

TABLE V
PERFORMANCE PARAMETERS OF EDGE DEVICES

Edge Devices AI Performance DRAM CPU GPU
NVIDIA Jetson Nano 0.47TFLOPS (FP16) 4GB 64-bit LPDDR4 25.6GB/s 4×Cortex-A57@1.4GHz 128×Maxwell@0.9GHz
NVIDIA Jetson TX2 1.33TFLOPS (FP16) 8GB 128-bit LPDDR4 59.7GB/s 6×Cortex-A57@1.4GHz 256×Pascal@1.3GHz
NVIDIA Jetson Xavier NX 21TOPS (INT8) 8GB 128-bit LPDDR4x 59.7GB/s 6×Carmel@1.4GHz 384×Volta@1.1GHz
NVIDIA Jetson Orin NX 100TOPS (INT8) 16GB 128-bit LPDDR5 102.4GB/s 8×Cortex-A78AE@1.4GHz 1024×Ampere@0.9GHz
NVIDIA Jetson AGX Orin 275TOPS (INT8) 64GB 256-bit LPDDR5 204.8GB/s 12×Cortex-A78AE@2.2GHz 2048×Ampere@1.3GHz

N
or

m
. U

til
ity

0
0.2
0.4
0.6
0.8

1

yolo_nano res_nano bert_nano yolo_TX2 res_TX2 bert_TX2 yolo_Orin
NX

res_Orin
NX

bert_Orin
NX

yolo_AGX
Orin

res_AGX
Orin

bert_AGX
Orin

DeepRT BATCH Delen BCEdge

Fig. 12. The utility of heterogeneous edge devices. The more computility of edge devices, the higher the utility.

BCEdge using object detection (YOLO-v5), image classifi-
cation (ResNet-18) and speech recognition (TinyBERT) DNN
models, respectively. Fig. 12 reports the utility of BCEdge
on four heterogeneous edge devices compared with baselines.
We can see that BCEdge outperforms the baselines on all
heterogeneous edge devices. Due to the image classification
has the least computing resources, the ResNet-18 DNN model,
therefore, has more optional batch size, the number of concur-
rent instances for multiple DNN models and shared memory
configuration among multiple DNN models to better trade off
throughput and latency than YOLO-v5 and TinyBERT. Similar
results are also seen in Fig. 9. Even for Jetson nano with the
weakest computility, the utility of BCEdge can be improved
by 20% 15%, and 10% on average compared with DeepRT,
BATCH and Ďelen, respectively. Since Jetson AGX Orin has
the highest computility to configure more batch size, the
number of concurrent instances for multiple DNN models and
shared memory configuration among multiple DNN models.
Thus, BCEdge receives the highest performance improvement,
and its average utility is 62%, 55% and 50% higher than
DeepRT, BATCH and Ďelen, respectively.

Fig. 13 reports the throughput and latency of four hetero-
geneous edge devices corresponding to Fig. 12. As shown in
Fig. 13, BCEdge also has a significant performance improve-
ment on the DNN models with fewer computing resources
and the edge devices with higher computility. Even for Jetson
Nano, BCEdge also achieves higher throughput and lower
latency compared to all baselines. Overall, BCEdge exhibits
flexible scalability that can adapt to heterogeneous resource-
constrained edge devices.

D. Evaluation of Interference Prediction Model

In this section, we evaluate the proposed interference pre-
diction model in BCEdge with different requests per second
(rps) on SLO violation rate. The interference prediction model
records total 2000 inference interference data with one second
period for each DNN model. Among the 2000 pieces of
collected data, we randomly select 1600 pieces of execution

data as training data and 400 pieces of data for validation.
Fig. 14 presents the cumulative distribution of the prediction
errors for our DNN-based interference model compared to
a linear regression model [4], [52]. It can be seen that our
proposed DNN-based model can predict up to 90% of cases
with an error rate of 2.69%, and up to 95% of the cases
if an error rate of 3.25% is allowed, and the error rate is
reduced by half compared to the linear regression model.
Since the model interference we observed in Fig. 2 is not
a simple linear relationship, the linear regression model has a
higher prediction error. In contrast, out proposed DNN-based
interference model considers the memory utilization of edge
devices and the collected historical data, which can accurately
predict the interference latency.

Fig. 15 shows the cumulative distribution of SLO violation
rate at 30 rps for BCEdge with/without the interference
prediction model. We analyze the SLO violation rate for a
scheduling duration of 3000 seconds in Fig. 10. Our proposed
model can reduce the SLO violation rate from 9.2% to
4.1% compared to BCEdge without the interference prediction
model. It illustrates that the interference prediction model can
improve the robustness of BCEdge and significantly reduce
SLO violation rate.

We also evaluate the SLO violation rate by consistently
increasing the requests per second (rps). As shown in Fig. 16,
BCEdge has the lowest SLO violation rate compared to all
baselines, which is 48%, 40% and 63% lower than DeepRT,
BATCH and Ďelen on average, respectively, and the SLO
violation rate of BCEdge is within 5% even at 40rps. Since
the soft real-time scheduler in DeepRT is only suitable for
DNN models without strict SLO budgets, it has a higher SLO
violation rate than BCEdge. Despite BATCH leverages an
optimizer to provide inference tail delay guarantees, it ignores
the performance interference and memory contention among
multiple DNN models, the SLO violation rate, therefore, is
also higher than BCEdge, but lower than DeepRT. Delen does
not consider the SLO budget for inference requests and thus
has the highest SLO violation rate.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

12

Th
ro

ug
hp

ut
 (r

ps
)

Av
g.

La
te

nc
y

(m
s)

Jetson Nano Jetson TX2 Jetson Orin NX Jetson AGX Orin

0

200

400

600

0

10

20

30

DeepRT BATCH Delen BCEdge

Throughput Latency

0

200

400

600

0

10

20

30

DeepRT BATCH Delen BCEdge

Throughput Latency

0

25

50

75

100

0

40

80

120

DeepRT BATCH Delen BCEdge

Throughput Latency

0
10
20
30
40
50

0

100

200

300

DeepRT BATCH Delen BCEdge

Throughput Latency

(a) YOLO-v5 (yolo)

Th
ro

ug
hp

ut
 (r

ps
)

Av
g.

La
te

nc
y

(m
s)

Jetson Nano Jetson TX2 Jetson Orin NX Jetson AGX Orin

0

100

200

300

0

10

20

30

40

DeepRT BATCH Delen BCEdge
0

100

200

300

0

10

20

30

40

DeepRT BATCH Delen BCEdge
0

10

20

30

0

100

200

300

DeepRT BATCH Delen BCEdge
0

5

10

15

20

0

200

400

600

DeepRT BATCH Delen BCEdge

(b) ResNet-18 (res)

Th
ro

ug
hp

ut
 (r

ps
)

Av
g.

La
te

nc
y

(m
s)

Jetson Nano Jetson TX2 Jetson Orin NX Jetson AGX Orin

0

100

200

300

400

0

5

10

15

20

DeepRT BATCH Delen BCEdge
0

100

200

300

400

0

10

20

30

DeepRT BATCH Delen BCEdge
0
10
20
30
40
50

0

50

100

150

DeepRT BATCH Delen BCEdge
0

10

20

30

0

100

200

300

400

DeepRT BATCH Delen BCEdge

(c) TinyBERT (bert)

Fig. 13. The throughput and average latency of heterogeneous edge devices. The more computing resources of edge devices, the higher the throughput and
the lower the average latency.

5 200.00

0.2

1.0

0.8

0.6

0.4

C
D

F

NN-based model
Linear regression model

10 15
Error (%)

Up to 95%, Error rate < 3.25%

Up to 90%, Error rate < 2.69%

Fig. 14. Cumulative distribution of relative error rate. Our proposed DNN-
based model can predict up-to 95% of cases with less than 3.25% error rate.

0 2 4 6 8 10
SLO violation rates (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

 BCEdge w/ interference prediction
 BCEdge /o interference prediction

Fig. 15. Cumulative distribution of SLO violation rate with 30rps. Our
proposed interference prediction model can achieve the SLO violation rate
within 4%, compared to up to 9.2% SLO violation rate without the interference
prediction model.

SL
O

 v
io

la
tio

n
ra

te

0%

3%

6%

9%

12%

5rps 10rps 15rps 20rps 25rps 30rps 35rps 40rps

DeepRT BATCH Delen BCEdge

Fig. 16. Comparison of latency service level objective (SLOL) violation rate
with real-world six DNN model benchmarks under different rps. Benefit from
the interference prediction model, BCEdge has the lowest SLO violation rate.

E. Overhead Analysis

Runtime Latency: in order to evaluate the runtime latency
imposed by scheduler, we compare BCEdge with three base-
lines in terms of the average scheduling latency. Fig. 17 depicts
these scheduling latency. As observed, BCEdge has a lower
scheduling latency due to its scheduler leverages the branch-
based DRL scheduling algorithm, which reduces the schedul-
ing latency by executing actions in parallel. Specifically, the
average scheduling latency of BCEdge is 26%, 43% and 35%
lower than that of DeepRT, BATCH and Ďelen, respectively. It
demonstrates that BCEdge can efficiently schedule batch and
concurrent requests with extremely low scheduling latency.
Note that we did not evaluate the overhead of performance
profiler and interference prediction model as their overheads
are negligible.

Memory Usage: in this section, we evaluate the memory
usage of BCEdge for all DNN models compared to baselines.
As shown in Fig. 18, the memory usage of BCEdge is 45%,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

13

O
ve

rh
ea

d
(m

s)

0
2
4
6
8

10

yolo mob res eff inc bert

DeepRT BATCH Delen BCEdge

Fig. 17. Comparison of scheduling latency with six DNN models.

39% and 30% less than that of DeepRT, BATCH and Delen
on average, respectively. Intuitively, the shared memory policy
in BCEdge significantly reduces memory usage by sharing the
parameter space and runtime space of multi-DNN model and
multi-instance. In contrast, other baselines do not optimize the
memory of inference service concurrency, which intensifies
the memory usage among multiple DNN models and multi-
instance and increases the risk of memory contention, thereby
interfering with the trade-off between throughput and latency.

M
em

or
y

us
ag

e
(G

B)

0
2
4
6
8

yolo mob res eff inc bert

DeepRT BATCH Delen BCEdge

Fig. 18. Comparison of memory usage with six DNN models.

Scheduling Overhead: in this section, we discuss the
scheduling time duration of BCEdge. As shown in Fig. 19,
the scheduling time duration is negligible (less than 1%),
compared to the time for each component of the end-to-end
latency. This is due to our proposed branch-based reinforce-
ment learning scheduling algorithm. It significantly reduces the
scheduling time duration by replacing the sequential decisions
in the traditional DRL algorithm with parallel decisions. In ad-
dition, we also discuss the possibility of combining heuristic-
based solution with our proposed DRL-based solution in
Section VII.

VII. DISCUSSION

Request Arrival Rate Adaptation. Similar to the baseline
approaches, BCEdge does not adapt the request arrival rate and
this challenge can be left to future work. We plan to decouple
the request arrival rate adaptation decision and scheduling
algorithms [53], based on analyzing different request arrival
patterns (such as Poisson distribution, normal distribution,
random arrival, etc.) to better ensure QoS.

Scalability. We believe that BCEdge has the potential to be
scaled beyond a single edge device and can support computing
clusters of any size. However, due to network bandwidth
fluctuations, additional communication latency is inevitably
introduced. We plan to design a bandwidth adaptation policy
to help with BCEdge scalability.

Integrated with DNN Compiler. The performance improve-
ments of BCEdge benefit from model-level batching and

Inference

90.45%

Transmission

4.46%

Queuing

2.68%

Response

1.67%

Scheduling

0.74%

Inference Transmission Queuing Response Scheduling

Fig. 19. Average scheduling time duration vs. Average time for each
component of the end-to-end latency. We use NVIDIA Xavier NX edge
devices to infer the six DNN models in Table IV.

concurrent scheduling, but still suffer from memory contention
among multiple DNN models. To this end, we plan to integrate
with DNN compilers to efficiently utilize the limited compu-
tational resources of edge devices. For instance, representative
DNN compilers like TVM [28] can generate high-performance
DNN operators with low latency using auto-tuning [54], based
on fine-grained operator-level scheduling policies. BCEdge
can serve as a post-compiling runtime to ensure that on-device
resources are fully utilized during runtime in an adaptive
manner.

Combine with Other Approaches. BCEdge can work sym-
biotically with other optimized DNN inference approaches,
such as model compression [5], early exit [55] and edge-cloud
collaborative inference [56]. In these ways, it becomes possible
to achieve better throughput and latency tradeoffs, as well
as higher resource utilization, enabling efficient execution of
DNN model inference in resource-constrained edge computing
environments. To optimize the scheduling time duration, a
promising approach is to combine our proposed reinforce-
ment learning-based scheduling solution with a heuristic-based
scheduling solution. To be more specific, the heuristic-based
scheduling solution is used for initial scheduling, and the
reinforcement learning-based scheduling solution is used for
runtime scheduling. We believe that this hybrid scheduling
solution can better avoid SLO violation by reducing the
scheduling time duration.

Hardware-Aware Latency Prediction. The basis for pro-
viding DNN inference services with high QoS is efficient and
accurate inference prediction. Our proposed latency predictor
currently depends on historical latency data and the memory
utilization of edge devices. Yet, in practice, especially on
edge devices with different architectures (such as CPU, GPU,
NPU, and FPGA, etc.), it is hard to maintain stable prediction
performance without having a detailed understanding of the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

14

hardware’s internals. In future work, we plan to explore
a latency predictor for hardware-aware neural architecture
search (NAS) [57] to accurately and efficiently predict DNN
inference latency on different edge devices.

VIII. CONCLUSION

Providing multi-DNN model inference service with batch-
ing and concurrent execution on resource-constrained edge
devices presents both promising opportunities and signifi-
cant challenges, which involves guaranteeing SLO budgets
for inference requests and reducing memory contention. In
this paper, we propose BCEdge, an adaptive, SLO-aware
scheduling framework for multiple DNN models inference
service. BCEdge enables batching and concurrent inference
for edge intelligent applications on edge devices to achieve
both high-throughput and low-latency. The key to BCEdge is
the learning-based scheduler with the parallel branches, which
co-optimizes batch size, the number of concurrent instances
for multiple DNN models and shared memory configuration
among multiple DNN models automatically. Additionally, the
shared memory policy and lightweight DNN-based prediction
model in BCEdge aim to reduce memory usage and achieve
SLO-aware, respectively. Extensive experiments show that
BCEgde outperforms state-of-the-art schemes in improving the
throughput-latency trade-off, reducing SLO violation rate and
memory usage.

REFERENCES

[1] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system.” in
NSDI, vol. 17, 2017, pp. 613–627.

[2] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine learn-
ing inference serving on serverless platforms with adaptive batching,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–15.

[3] NVIDIA Corporation. (2023) Nvidia triton inference server. Accessed
on 2023-12-18, Version 2.19.0. [Online]. Available: https://developer.
nvidia.com/nvidia-triton-inference-server

[4] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Serving
heterogeneous machine learning models on {Multi-GPU} servers with
{Spatio-Temporal} sharing,” in 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22), 2022, pp. 199–216.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[6] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, pp. 1789–
1819, 2021.

[7] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit quantiza-
tion of neural networks for efficient inference,” in 2019 IEEE/CVF In-
ternational Conference on Computer Vision Workshop (ICCVW). IEEE,
2019, pp. 3009–3018.

[8] D. Feng, C. Haase-Schütz, L. Rosenbaum, H. Hertlein, C. Glaeser,
F. Timm, W. Wiesbeck, and K. Dietmayer, “Deep multi-modal object
detection and semantic segmentation for autonomous driving: Datasets,
methods, and challenges,” IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 3, pp. 1341–1360, 2020.

[9] Y. Yang, H. Luo, H. Xu, and F. Wu, “Towards real-time traffic sign detec-
tion and classification,” IEEE Transactions on Intelligent transportation
systems, vol. 17, no. 7, pp. 2022–2031, 2015.

[10] N. Shvai, A. Hasnat, A. Meicler, and A. Nakib, “Accurate classification
for automatic vehicle-type recognition based on ensemble classifiers,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3,
pp. 1288–1297, 2019.

[11] X. Ouyang, X. Shuai, J. Zhou, I. W. Shi, Z. Xie, G. Xing, and
J. Huang, “Cosmo: contrastive fusion learning with small data for
multimodal human activity recognition,” in Proceedings of the 28th
Annual International Conference on Mobile Computing And Networking,
2022, pp. 324–337.

[12] Ultralytics. (2023) Yolov5. Accessed on 2023-11-14, Version 7.0.
[Online]. Available: https://github.com/ultralytics/yolov5/tree/v7.0

[13] NVIDIA Corporation. (2023) Nvidia tensorrt. Accessed on 2023-12-26,
Version 8.2. [Online]. Available: https://developer.nvidia.com/tensorrt

[14] Z. Liu, J. Leng, Z. Zhang, Q. Chen, C. Li, and M. Guo, “Veltair: towards
high-performance multi-tenant deep learning services via adaptive com-
pilation and scheduling,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 388–401.

[15] Z. Yang, K. Nahrstedt, H. Guo, and Q. Zhou, “Deeprt: A soft real
time scheduler for computer vision applications on the edge,” in 2021
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2021, pp.
271–284.

[16] Q. Liang, W. A. Hanafy, N. Bashir, A. Ali-Eldin, D. Irwin, and
P. Shenoy, “Dělen: Enabling flexible and adaptive model-serving for
multi-tenant edge ai,” in Proceedings of the 8th ACM/IEEE Conference
on Internet of Things Design and Implementation, 2023, pp. 209–221.

[17] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible, high-
performance ml serving,” arXiv preprint arXiv:1712.06139, 2017.

[18] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 220–233.

[19] W. Cui, H. Zhao, Q. Chen, H. Wei, Z. Li, D. Zeng, C. Li, and M. Guo,
“{DVABatch}: Diversity-aware {Multi-Entry}{Multi-Exit} batching for
efficient processing of {DNN} services on {GPUs},” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22), 2022, pp. 183–198.

[20] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services
for cost-effective, slo-aware machine learning inference serving.” in
USENIX Annual Technical Conference, 2019, pp. 1049–1062.

[21] W. Seo, S. Cha, Y. Kim, J. Huh, and J. Park, “Slo-aware inference
scheduler for heterogeneous processors in edge platforms,” ACM Trans.
Archit. Code Optim., vol. 18, no. 4, pp. 1–26, 2021.

[22] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “Infaas: Au-
tomated model-less inference serving.” in USENIX Annual Technical
Conference, 2021, pp. 397–411.

[23] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace, “Serving DNNs like clockwork: Performance predictability
from the bottom up,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020, pp. 443–462.

[24] X. Liu, B. Wu, X. Yuan, and X. Yi, “Leia: A lightweight cryptographic
neural network inference system at the edge,” IEEE Trans. Inf. Forensics
Secur., vol. 17, pp. 237–252, 2021.

[25] J. Hou, H. Liu, Y. Liu, Y. Wang, P.-J. Wan, and X.-Y. Li, “Model
protection: Real-time privacy-preserving inference service for model
privacy at the edge,” IEEE Trans. Dependable Secure Comput., 2021.

[26] Y. G. Kim and C.-J. Wu, “Autoscale: Energy efficiency optimization
for stochastic edge inference using reinforcement learning,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 1082–1096.

[27] W. Zhang, D. Yang, H. Peng, W. Wu, W. Quan, H. Zhang, and
X. Shen, “Deep reinforcement learning based resource management for
dnn inference in industrial iot,” IEEE Trans. Veh. Technol., vol. 70, no. 8,
pp. 7605–7618, 2021.

[28] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated {End-to-End}
optimizing compiler for deep learning,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018, pp.
578–594.

[29] M. Han, H. Zhang, R. Chen, and H. Chen, “Microsecond-scale pre-
emption for concurrent {GPU-accelerated}{DNN} inferences,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022, pp. 539–558.

[30] W. Cui, H. Zhao, Q. Chen, N. Zheng, J. Leng, J. Zhao, Z. Song,
T. Ma, Y. Yang, C. Li et al., “Enable simultaneous dnn services based
on deterministic operator overlap and precise latency prediction,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–15.

[31] Z. Zhang, H. Li, Y. Zhao, C. Lin, and J. Liu, “Pos: An operator
scheduling framework for multi-model inference on edge intelligent

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/ultralytics/yolov5/tree/v7.0
https://developer.nvidia.com/tensorrt

15

computing,” in Proceedings of the 22nd International Conference on
Information Processing in Sensor Networks, 2023, pp. 1–1.

[32] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“Spinn: synergistic progressive inference of neural networks over device
and cloud,” in Proceedings of the 26th annual international conference
on mobile computing and networking, 2020, pp. 1–15.

[33] S. S. Mondal, N. Sheoran, and S. Mitra, “Scheduling of time-varying
workloads using reinforcement learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 10, 2021, pp. 9000–
9008.

[34] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. Leung, “Tailored
learning-based scheduling for kubernetes-oriented edge-cloud system,”
in IEEE INFOCOM 2021-IEEE Conference on Computer Communica-
tions. IEEE, 2021, pp. 1–10.

[35] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Trans. Mob. Comput.,
2020.

[36] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for
pervasive edge computing: A decentralized computation offloading algo-
rithm,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 411–425,
2020.

[37] J. Zou, T. Hao, C. Yu, and H. Jin, “A3c-do: A regional resource
scheduling framework based on deep reinforcement learning in edge
scenario,” IEEE Trans. Comput., vol. 70, no. 2, pp. 228–239, 2020.

[38] D. Shi, H. Gao, L. Wang, M. Pan, Z. Han, and H. V. Poor, “Mean
field game guided deep reinforcement learning for task placement in
cooperative multiaccess edge computing,” IEEE Internet Things J.,
vol. 7, no. 10, pp. 9330–9340, 2020.

[39] S. Tuli, G. Casale, and N. R. Jennings, “Mcds: Ai augmented workflow
scheduling in mobile edge cloud computing systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 11, pp. 2794–2807, 2021.

[40] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, “Online deadline-
aware task dispatching and scheduling in edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1270–1286, 2019.

[41] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning,” in 15th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
21), 2021.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[43] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures
for deep reinforcement learning,” in Proceedings of the aaai conference
on artificial intelligence, vol. 32, no. 1, 2018.

[44] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995–
2003.

[45] Z. Zhao, N. Ling, N. Guan, and G. Xing, “Miriam: Exploiting elastic
kernels for real-time multi-dnn inference on edge gpu,” arXiv preprint
arXiv:2307.04339, 2023.

[46] J. Jeong, S. Baek, and J. Ahn, “Fast and efficient model serving using
multi-gpus with direct-host-access,” in Proceedings of the Eighteenth
European Conference on Computer Systems, 2023, pp. 249–265.

[47] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[49] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[50] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[51] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu,
“TinyBERT: Distilling BERT for natural language understanding,” in
Findings of the Association for Computational Linguistics: EMNLP
2020, Nov. 2020, pp. 4163–4174.

[52] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[53] V. Nigade, P. Bauszat, H. Bal, and L. Wang, “Jellyfish: timely inference
serving for dynamic edge networks,” in 2022 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2022, pp. 277–290.

[54] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen et al., “Ansor: Generating {High-Performance} tensor
programs for deep learning,” in 14th USENIX symposium on operating
systems design and implementation (OSDI 20), 2020, pp. 863–879.

[55] Z. Zhang, Y. Zhao, and J. Liu, “Octopus: Slo-aware progressive in-
ference serving via deep reinforcement learning in multi-tenant edge
cluster,” in International Conference on Service-Oriented Computing.
Springer, 2023, pp. 242–258.

[56] Z. Zhang, Y. Zhao, H. Li, C. Lin, and J. Liu, “Dvfo: Learning-
based dvfs for energy-efficient edge-cloud collaborative inference,” IEEE
Transactions on Mobile Computing, 2024.

[57] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, “Hat:
Hardware-aware transformers for efficient natural language processing,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 7675–7688.

Ziyang Zhang Ziyang Zhang received the MS
degrees in the School of Electronic Information
and Optical Engineering, Nankai University, Tianjin,
China, in 2020. He is currently working toward
the PhD degree in the School of Computer Sci-
ence and Technology, Harbin Institute of Technology
(HIT), Harbin, China. His research interests include
edge computing, machine learning system, and deep
learning.

Yang Zhao Yang Zhao received the BS degree
(2003) in electrical engineering from Shandong Uni-
versity, the MS degree (2006) in electrical engineer-
ing from the Beijing University of Aeronautics and
Astronautics, and the PhD degree (2012) in electrical
and computer engineering from the University of
Utah. He was a lead research engineer at GE Global
Research between 2013 and 2021. Since 2021, he
has been at Harbin Institute of Technology, Shen-
zhen, where he is a research professor in the Inter-
national Research Institute for Artificial Intelligence.

His research interests include wireless sensing, edge computing and cyber
physical systems. He is a senior member of the IEEE.

Huan Li Dr. Huan Li obtained her PhD degree
in Computer Science from the University of Mas-
sachusetts at Amherst, USA in 2006. Her current
research interests include AIoT, Edge intelligence,
distributed real-time systems, and data science. She
has served as program committee member for nu-
merous international conferences including IEEE
RTAS, ICDCS, RTCSA, etc. She is now a senior
member of IEEE.

Jie Liu Jie Liu is a Chair Professor at Harbin Insti-
tute of Technology Shenzhen (HIT Shenzhen), China
and the Dean of its AI Research Institute. Before
joining HIT, he spent 18 years at Xerox PARC
and Microsoft. He was a Principal Research Man-
ager at Microsoft Research, Redmond and a partner
of the company. His research interests are Cyber-
Physical Systems, AI for IoT, and energy efficient
computing. He received IEEE TCCPS Distinguished
Leadership Award and 6 Best Paper Awards from
top conferences. He is an IEEE Fellow and an ACM

Distinguished Scientist, and founding Chair of ACM SIGBED China.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3409701

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 07,2024 at 06:21:45 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related work
	On-Device Model-Level DNN Inference Service
	On-Device Operator-Level DNN Inference Service
	DNN Inference Service in Edge-Cloud Collaboration

	System Model and Problem formulation
	System Models
	Problem Formulation

	System Design
	System Overiew
	Dynamic Batching
	Model Instance Concurrency
	Shared Memory Policy for Multiple DNN Models
	Learning-based Scheduler
	SLO-Aware Interference Predictor

	Implementation
	Evaluation
	Evaluation Metrics
	Overall Performance
	Evaluation of Scalability
	Evaluation of Interference Prediction Model
	Overhead Analysis

	Discussion
	Conclusion
	References
	Biographies
	Ziyang Zhang
	Yang Zhao
	Huan Li
	Jie Liu

