Conclusion and Related Work

Robust Estimators for Variance-based Radio Tomographic Imaging and Tracking

Yang Zhao

GE Global Research Center

December 27, 2016

GE Global Research Center

Yang Zhao

Conclusion and Related Work

Outline

1 Introduction

- Radio Tomographic Imaging (RTI)
- Variance-based RTI (VRTI)

2 Robust Estimators

- Subspace Solution
- Least Squares Solution
- 3 Conclusion and Related Work
 - Conclusion
 - Beyond Localization

Yang Zhao

GE Global Research Center

Conclusion and Related Work

Outline

1 Introduction

- Radio Tomographic Imaging (RTI)
- Variance-based RTI (VRTI)

2 Robust Estimators

- Subspace Solution
- Least Squares Solution
- 3 Conclusion and Related Work
 - Conclusion
 - Beyond Localization

Yang Zhao

GE Global Research Center

Yang Zhao

Robust Estimators

Conclusion and Related Work

Device Free Localization (DFL)

- RFID technique, locates people's tags ^a
- How about people, objects not tagged?
- Applications: emergency response, smart homes, context-aware computing, etc.

^a Y. Zhao, N. Patwari, P. Agrawal, and M. Rabbat, "Directed by Directionality: Benefiting from the Gain Pattern of Active RFID Badges," *IEEE Transactions on Mobile Computing*, May 2011.

Conclusion and Related Work

Why Use Wireless Sensor Networks for DFL?

- Video cameras: Don't work in dark, through smoke or walls. Privacy concerns.
- IR Motion detectors: Limited by walls. High false alarms.
- Ultra wideband (UWB) radar: High cost.
- Received signal strength (RSS) from a wireless network: Noisy but low cost.

GE Global Research Center

Conclusion and Related Work

RSS-DFL: Measure Spatially Distinct Links

- Mesh network of *N* transceivers $\rightarrow O(N^2)$ RSS measurements
- Link RSS changes due to people in environment near link

Yang Zhao

GE Global Research Center

Introduction

Radio Tomographic Imaging (RTI)

Robust Estimators

Conclusion and Related Work

Radio Tomographic Imaging (RTI)

- Model-based, no training needed
- Real-time implementation

コ × 4 聞 × 4 目 × 4 目 × 9 4 C

GE Global Research Center

Yang Zhao

Introduction	Robust Estimators	Conclusion and Related We
o ●ooooo	0000000 0000	00 0000
Variance-based RTI (VRTI)		

Through-wall Test

Tested system with 34 nodes, outside of external walls of area of house ¹

¹ J. Wilson and N. Patwari, "See Through Walls: Motion Tracking Using Variance-Based Radio Tomography Networks", IEEE Transactions on Mobile Computing, 2011.

GE Global Research Center

Yang Zhao

Introduction ○ ○●○○○○	Robust Estimators 0000000 0000	Conclusion and Related Work oo oooo
Variance-based RTI (VRTI)		
Problem		

 Shadowing-based RTI does not indicate actual human location (X)

GE Global Research Center

Yang Zhao

 $_{\odot}^{\rm Introduction}$

00000

Variance-based RTI (VRTI)

Robust Estimators

Conclusion and Related Work

Problem: What Happened?

- SNR is too low due to multipath effect
- Blocking person increases RSS (- - - -)
- But, moving person increases RSS variance (both links)

Yang Zhao

GE Global Research Center

 Robust Estimators

Conclusion and Related Work

GE Global Research Center

Idea: Use Variance to Image Motion

Model: Assume variance is linear combination of motion occurring in each pixel:

s = Wm + n

- **s** = [$s_1, \ldots s_M$]^T = windowed sample variance **m** = [m_1, \ldots, m_N]^T = motion $\in [0, 1]$
- W = [[w_{i,j}]]_{i,j} = variance added to link *i* caused by motion in voxel *j*

Yang Zhao

 Robust Estimators

Conclusion and Related Work

Variance-based Radio Tomographic Imaging

- Apply regularized inversion to estimate m.
- VRTI image indicates actual human location (X)

Yang Zhao

GE Global Research Center

o 000000

Variance-based RTI (VRTI)

Robust Estimators

Conclusion and Related Work

VRTI Video

http://span.ece.utah.edu/radio-tomographic-imaging (avg. error = 0.63 m)

Yang Zhao

GE Global Research Center

Conclusion and Related Work

Outline

Introduction

- Radio Tomographic Imaging (RTI)
- Variance-based RTI (VRTI)

2 Robust Estimators

- Subspace Solution
- Least Squares Solution
- 3 Conclusion and Related Work
 - Conclusion
 - Beyond Localization

Yang Zhao

GE Global Research Center

Yang Zhao

Robust Estimators

Conclusion and Related Work

Experiments

- Experiments 1 and 2 are performed
 - in the same residential house
 - using 34 TelosB nodes, and TinyOS Spin program
 - following the same procedure: calibration and real-time measurements.

GE Global Research Center

Yang Zhao

Robust Estimators

Conclusion and Related Work

Problem of VRTI: Noise from Intrinsic Motion

 Identical experiments show very different VRTI performance on a still (Left) vs. windy day (Right)

GE Global Research Center

Introduction 0 000000 Robust Estimators

Conclusion and Related Work

RSS variations due to intrinsic motion

Intrinsic motion: motion of objects that are intrinsic parts of an environment, e.g., fans, moving machines, wind.

Extrinsic motion: motion of people and other objects that enter and leave an environment

Yang Zhao

GE Global Research Center

Subspace Solution

Robust Estimators

Conclusion and Related Work

Subspace Variance-based Radio Tomography (SubVRT)

- Principal component analysis (PCA): capture the major feature of intrinsic motion
- Subspace decomposition: remove/reduce the effect of intrinsic motion²

GE Global Research Center

²Y. Zhao and N. Patwari, "Noise reduction for variance-based device-free localization and tracking", *IEEE* SECON 2011.

o o oooooo

Subspace Solution

Robust Estimators

Conclusion and Related Work

PCA on calibration measurements

- Calibration measurements
 s_c only contain the effect from intrinsic motion
- Estimate the covariance matrix C_{s_c} of s_c
- Perform SVD on $C_{\mathbf{s}_c}$: $C_{\mathbf{s}_c} = U \wedge U^T$
- Capture intrinsic motion by the first k eigenvectors

Introduction 0 000000

Subspace Solution

Robust Estimators

Conclusion and Related Work

Subspace decomposition

- Divide all eigenvectors into two sets: Û = [u₁, u₂, ···, u_k] and Ũ = [u_{k+1}, u_{k+2}, ···, u_L].
- One subspace is spanned by \hat{U} the intrinsic subspace, the other is spanned by \tilde{U} the extrinsic subspace
- Project s on intrinsic and extrinsic subspaces to obtain intrinsic signal component s and extrinsic signal component s:

$$\hat{\mathbf{s}} = \Pi_I \mathbf{s} = \hat{U} \hat{U}^T \mathbf{s}$$
$$\tilde{\mathbf{s}} = \Pi_E \mathbf{s} = (I - \hat{U} \hat{U}^T) \mathbf{s}$$

Yang Zhao

GE Global Research Center

Subspace Solution

Robust Estimators

Conclusion and Related Work

SubVRT formulation

VRTI

Using real-time measurement vector \mathbf{s}_r , the Tikhonov regularized solution is:

$$\hat{\mathbf{m}} = \Pi_1 \mathbf{s}_r$$
 where $\Pi_1 = (W^T W + \alpha Q^T Q)^{-1} W^T$

SubVRT

Using decomposed extrinsic signal component $\tilde{\mathbf{s}}_r = \Pi_E \mathbf{s}_r$:

$$\hat{\mathbf{m}} = \Pi_2 \mathbf{s}_r$$
 where $\Pi_2 = (W^T W + \alpha Q^T Q)^{-1} W^T \Pi_E$

Yang Zhao

GE Global Research Center

イロン イヨン イヨン イヨ

Introduction 0 000000

Subspace Solution

Robust Estimators

Conclusion and Related Work

Estimates from VRTI and SubVRT

Figure : VRTI estimates.

Figure : SubVRT estimates.

Yang Zhao

GE Global Research Center

o o oooooo

Subspace Solution

Robust Estimators

Conclusion and Related Work

Performance Improvement

In windy experiment, location error reduced by > 40%

Yang Zhao

GE Global Research Center

Subspace Solution

Robust Estimators

Conclusion and Related Work

Real-time SubVRT Demo

- Use an electronic fan to create intrinsic motion (noise)
- Robust localization performance

□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ • < ○ ○</p>

GE Global Research Center

Yang Zhao

Least Squares Solution

Robust Estimators

Conclusion and Related Work

Least Squares Solution

- Idea: Instead of performing PCA on the covariance matrix, use the covariance matrix directly
- Formulation: ³

$$\hat{\mathbf{m}} = \Pi_3 \mathbf{s}_r$$

$$\Pi_3 = (W^T C_{\mathbf{n}}^{-1} W + C_{\mathbf{m}}^{-1})^{-1} W^T C_{\mathbf{n}}^{-1}.$$

³Y. Zhao and N. Patwari, "Robust Estimators for Variance-Based Device Free Localization and Tracking", IEEE Transactions on Mobile Computing, Oct. 2015.

Yang Zhao

GE Global Research Center

Least Squares Solution

Robust Estimators

Conclusion and Related Work

Estimation of Covariance matrix Cn

- The sample covariance estimator: ill-posed for high dimensional problem
- Ledoit-Wolf estimator: a linear combination of the sample covariance matrix and a scaled identity matrix:

$$C_{\mathbf{n}} = \nu \mu I + (1 - \nu) C_{\mathbf{n}}^*$$

C^{*}_n is the sample covariance matrix of noise n
 μ is the scaling parameter for the identity matrix *I* ν is the shrinkage parameter that shrinks the sample covariance towards the scaled identity matrix

Yang Zhao

GE Global Research Center

Least Squares Solution

Robust Estimators

Conclusion and Related Work

Further Improvement

No need to choose the k parameter as in SubVRT

GE Global Research Center

Yang Zhao

Least Squares Solution

Robust Estimators

Conclusion and Related Work

Apply Kalman filter to location estimates for tracking

Yang Zhao

Robust Estimators for Variance-based Radio Tomographic Imaging and Tracking

GE Global Research Center

Conclusion and Related Work

Outline

Introduction

- Radio Tomographic Imaging (RTI)
- Variance-based RTI (VRTI)

2 Robust Estimators

- Subspace Solution
- Least Squares Solution

3 Conclusion and Related Work

- Conclusion
- Beyond Localization

GE Global Research Center

Yang Zhao

Introduction 000000 Conclusion

Yang Zhao

Robust Estimators

Conclusion and Related Work

- VRTI can detect and locate people even through-walls, but it is sensitive to intrinsic motion
- SubVRT uses subspace decomposition method and is more robust with calibration measurements
- LSVRT further uses covariance matrices of noise and prior to improve the robustness of VRTI

Introduction 0 000000

Conclusion

Robust Estimators

Conclusion and Related Work

Commercialization of RTI

Security sensor: Tomographic Motion Detection (TMD)

- Big need: warehouse security systems
- Hidden, low false alarm rate, cannot "get around" it

Yang Zhao

GE Global Research Center

Beyond Localization

Robust Estimators

Conclusion and Related Work

Respiration Monitoring Using Wireless Network

RSS changes periodically even when a person stays still ⁴

⁴Y. Zhao, et al., "Respiration Monitoring using a Wireless Network with Space and Frequency Diversities", IEEE ICCE 2016.

Yang Zhao

GE Global Research Center

o o oooooo

Beyond Localization

Robust Estimators

Conclusion and Related Work ○○ ○●○○

Experiments at GE Global Research

GE Global Research Center

Yang Zhao

Beyond Localization

Robust Estimators

Conclusion and Related Work

Human Activity Monitoring Using Doppler and RSS

Fusion with Doppler sensor ⁵

⁵Y. Zhao, et al., "Non-invasive Human Activity Monitoring using a Low-cost Doppler Sensor and an RF Link",

ACM SenSys,	Nov.	2015.
-------------	------	-------

Yang Zhao

GE Global Research Center

Introduction 0 000000

Yang Zhao

Beyond Localization

Robust Estimators

Conclusion and Related Work ○○ ○○○●

Acknowledgements

Prof. Neal Patwari at University of Utah

Department of Veterans Affairs

GE Global Research Center