Radio Tomographic Localization in Wireless Sensor Networks

Yang Zhao

April 26, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

UofU / ECE / SPAN

Yang Zhao

Outline

1 Introduction

- 2 Shadowing-Based RTI
- 3 Variance-Based RTI
- 4 Histogram Distance-Based RTI
- 5 Conclusion

◆□ ▶ ◆ 昂 ▶ ◆ ヨ → 今 Q C UofU / ECE / SPAN

Outline

1 Introduction

- 2 Shadowing-Based RTI
- 3 Variance-Based RTI
- 4 Histogram Distance-Based RTI
- 5 Conclusion

UofU / ECE / SPAN

Image: A matrix

- - E - F

Device Free Localization (DFL) Applications

- RFID technique, locates people's tags ^a
- How about people, objects not tagged?
- Applications: emergency response, smart homes, context-aware computing, etc.

⁴ Y. Zhao, N. Patwari, P. Agrawal, and M. Rabbat, "Directed by Directionality: Benefiting from the Gain Pattern of Active RFID Badges," *IEEE Transactions on Mobile Computing*, May 2011.

DFL: Technologies

- Video cameras. Don't work in dark, through smoke or walls. Privacy concerns.
- IR Motion detectors. Limited by walls. High false alarms.
- Ultra wideband (UWB) radar. High cost.
- Received signal strength (RSS) in a wireless network

Conclusion

RSS-DFL: Measure many spatially distinct links

- Mesh network of *N* transceivers $\rightarrow O(N^2)$ RSS measurements
- Link RSS changes due to people in environment near link
- One person / object affects multiple links

Radio Tomographic Imaging (RTI)

Model-based DFL, no training needed

AttenuationReflectionScattering

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 → ���

UofU / ECE / SPAN

Introduction

RTI Image Example

- Divide the network area into many pixels
- Pixel value represents the probability of human presence/motion

Yang Zhao

UofU / ECE / SPAN

Outline

1 Introduction

- 2 Shadowing-Based RTI
- 3 Variance-Based RTI
- 4 Histogram Distance-Based RTI
- 5 Conclusion

・ロト・雪・・雪・・雪・ うへぐ

UofU / ECE / SPAN

Shadowing-Based RTI

- First model-based RSS-DFL method
- Use shadowing caused by human body to locate people
- From experiments of wireless channel modeling in a network

UofU / ECE / SPAN

Channel Modeling

Generic model for received power:

$$P_a = \bar{P}(d_a) + X_a$$

- *P_a*: measured received power on link *a*: at node *r_a* transmitted by node *t_a* (dBm),
- $\overline{P}(d_a)$: model for large-scale fading: Ensemble mean dBm received power at distance d_a .

■ X_a : shadowing, small-scale fading loss, measurement error Question: Are $\{X_a\}_a$ independent?

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

Conclusion

Experiments for Channel Modeling

- Fifteen indoor and six outdoor measurement campaigns
- Results: close links have correlated X_a¹
- Observations: Two shadowing fields: 1) Static, 2) Dynamic

¹ P. Agrawal and N. Patwari, "Correlated Link Shadow Fading in Multi-hop Wireless Networks," IEEE

Transactions on Wireless Commun., August 2009.

Yang Zhao

UofU / ECE / SPAN

Discrete-space Shadowing Field Model

- Model: Relates shadowing measurements with discretized dynamic shadowing field
- Consider simultaneously all *M* pair-wise links:

y = $[y_1, \dots, y_M]^T$ = measured shadowing losses; **p** = $[p_1, \dots, p_N]^T$ = discretized dynamic shadowing field; **W** = $[[w_{i,j}]]_{i,j}$ = weights; **n** = noise.

(日)

Dynamic Shadowing Field Estimation

Estimate dynamic shadowing field from measurements

Assume known W, measure y, estimate p

Problems

- Linear model isn't true physics; best W is unknown;
- 2 III-posed! Pixels \gg links;
- **3** Low SNR: RSS varies without human motion in area.

・ロト ・同ト ・ヨト ・ヨ

Introduction

UofU / ECE / SPAN

Initial Spatial Model

- No validated spatial model exists for W
- Our initial model: Pixels k in ellipse (w/ foci at TX and RX) have $W_{l,k} = 1$, zero otherwise.²

² N. Patwari and P. Agrawal, "Effects of Correlated Shadowing: Connectivity, Localization, and RF Tomography", *IEEE/ACM IPSN*, April 2008. < □ > < □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > Ξ

Yang Zhao

Image: A matrix

Linear Model Leads to Real-time Image Estimation

Real-time requirement: look for linear algorithm

 $\hat{\mathbf{p}} = \Pi \mathbf{y}$

- Projection Π needs only be calculated once
- Complexity: Order of # Links × # pixels

UofU / ECE / SPAN

UofU / ECE / SPAN

III-Posed Problem: Regularized Algorithms

Tikanov Regularized inverse: minimize penalized squared error³

$$f(\mathbf{p}) = \|W\mathbf{p} - \mathbf{y}\|^2 + \alpha \|Q\mathbf{p}\|^2$$

when Q is the derivative:

$$\Pi_{Tik} = \left[\boldsymbol{W}^T \boldsymbol{W} + \alpha (\boldsymbol{D}_X^T \boldsymbol{D}_X + \boldsymbol{D}_Y^T \boldsymbol{D}_Y) \right]^{-1} \boldsymbol{W}^T$$

2 Assume correlated p and use regularized least squares.

$$\Pi_{RLS} = \left(\boldsymbol{W}^{T} \boldsymbol{W} + \alpha \boldsymbol{C}_{\mathbf{p}}^{-1} \right)^{-1} \boldsymbol{W}^{T}$$

³ J. Wilson and N. Patwari, "Radio Tomographic Imaging with Wireless Networks", IEEE Transactions on Mobile Computing, May 2010.

Yang Zhao

Real-Time Implementation: Testbed

Yang Zhao

- Crossbow Telosb, 2.4 GHz, IEEE 802.15.4
- Spin: Token passing MAC; when one transmits, others measure RSS
- Open source:

http://span.ece.utah.edu/spin

- Packet data: latest measured RSS values
- Laptop-connected mote overhears all traffic

Image: A matrix

Yang Zhao

Video clip: span.ece.utah.edu/radio-tomographic-imaging

UofU / ECE / SPAN

Outline

1 Introduction

- 2 Shadowing-Based RTI
- 3 Variance-Based RTI
- 4 Histogram Distance-Based RTI
- 5 Conclusion

UofU / ECE / SPAN

UofU / ECE / SPAN

Through-wall Deployment Tests

Tested system with 34 nodes, outside of external walls of area of house ⁴

Yang Zhao

< 口 > < 同

Problem

 Shadowing-based RTI does not indicate actual human location (X)

Problem: What Happened?

- SNR is too low due to multipath effect
- Blocking person increases RSS (- - - -)
- But, moving person increases RSS variance (both links)

< < >>< < < >>< < < >>< < < >>< < < >>< < < >>< < < >>< < < >>< < < >>< < < >>< < >>< < < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< < >>< >>< >>< >>< < >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>< >>

UofU / ECE / SPAN

Yang Zhao

Idea: Use Variance to Image Motion

Model: Assume variance is linear combination of motion occurring in each pixel:

$\bm{s}=\textit{W}\bm{m}+\bm{n}$

s = [
$$s_1, \ldots s_M$$
]^T = windowed sample variance

m =
$$[m_1, \dots, m_N]^T$$
 = motion $\in [0, 1]$

W = [[w_{i,j}]]_{i,j} = variance added to link *i* caused by motion in voxel *j*

Variance-based Radio Tomographic Imaging

- Apply regularized inversion to estimate m.
- VRTI image indicates actual image human location (X)

UofU / ECE / SPAN

• = •

VRTI Video

http://span.ece.utah.edu/radio-tomographic-imaging (avg. error = 0.63 m)

Problem of VRTI: Noise from Intrinsic Motion

Figure: Identical experiments show very different VRTI performance on a (Left) still vs. (Right) windy day.

UofU / ECE / SPAN

Introduction

RSS variations due to intrinsic motion

Intrinsic motion: motion of objects that are intrinsic parts of an environment, e.g., fans, moving machines, wind.

Figure: RSS during calibration in windy day experiment.

Extrinsic motion: motion of people and other objects that enter and leave an environment

Yang Zhao

UofU / ECE / SPAN

Subspace Variance-based Radio Tomography (SubVRT)

Major steps in SubVRT

- Principal component analysis (PCA): capture the major feature of intrinsic motion
- Subspace decomposition: remove/reduce the effect of intrinsic motion

< D > < B > < E > < E</p>

PCA on calibration measurements

- Calibration measurements
 s_c only contain the effect from intrinsic motion
- Estimate the covariance matrix C_{sc} of s_c
- Perform SVD on $C_{\mathbf{s}_c}$: $C_{\mathbf{s}_c} = U \wedge U^T$
- Capture intrinsic motion by the first k eigenvectors

Figure: Scree plot.

- - E - F

Subspace decomposition

- Divide all eigenvectors into two sets: $\hat{U} = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k]$ and $\tilde{U} = [\mathbf{u}_{k+1}, \mathbf{u}_{k+2}, \cdots, \mathbf{u}_L]$.
- One subspace is spanned by \hat{U} the intrinsic subspace, the other is spanned by \tilde{U} the extrinsic subspace
- Project s on intrinsic and extrinsic subspaces to obtain intrinsic signal component ŝ and extrinsic signal component š:

$$\hat{\mathbf{s}} = \Pi_I \mathbf{s} = \hat{U} \hat{U}^T \mathbf{s}$$
$$\tilde{\mathbf{s}} = \Pi_E \mathbf{s} = (I - \hat{U} \hat{U}^T) \mathbf{s}$$

UofU / ECE / SPAN

Yang Zhao

SubVRT formulation

VRTI

Using real-time measurement vector \mathbf{s}_r , the Tikhonov regularized solution is:

$$\hat{\mathbf{m}} = \Pi_1 \mathbf{s}_r$$
 where $\Pi_1 = (W^T W + \alpha Q^T Q)^{-1} W^T$

SubVRT

Using decomposed extrinsic signal component $\tilde{\mathbf{s}}_r = \Pi_E \mathbf{s}_r$:

$$\hat{\mathbf{m}} = \Pi_2 \mathbf{s}_r$$
 where $\Pi_2 = (W^T W + \alpha Q^T Q)^{-1} W^T \Pi_E$

UofU / ECE / SPAN

イロト イヨト イヨト イヨト

Yang Zhao

UofU / ECE / SPAN

Improvement

- In windy experiment, location error reduced by > 40%⁵
- Video comparison

⁵Y. Zhao and N. Patwari, "Noise reduction for variance-based device-free localization and tracking", IEEE

SECON 2011.

Yang Zhao

UofU / ECE / SPAN

Alternative solution: Least squares method

Instead of performing PCA on the covariance matrix of the calibration measurements, use the covariance matrix directly in the RTI formulation ⁶

Transactions on Signal Processing, (submitted).

Yang Zhao

Outline

1 Introduction

- 2 Shadowing-Based RTI
- 3 Variance-Based RTI
- 4 Histogram Distance-Based RTI
- 5 Conclusion

・ロト・日本・日本・日本・日本・今日・

UofU / ECE / SPAN

From Observations of RSS Histograms

Two types of RSS histogram:

- Short-term histogram (STH): RSS histogram of a link in a short-time window (a few RSS samples)
- Long-term histogram (LTH): RSS histogram during a long term period (hundreds of RSS samples)

Image: A matrix

Observation 1

 Short-term histogram (STH) with people present near the link is significantly different from long-term histogram (LTH).

UofU / ECE / SPAN

Yang Zhao

Observation 2

High similarity between offline LTH and online LTH

UofU / ECE / SPAN

New Testbed

Yang Zhao

- TI CC2531, 2.4 GHz, IEEE 802.15.4
- Spin protocol (C version)
- RSS sampling rate of 3 ms per sample

Image: A matrix

Histogram Distance-Based RTI

 Able to locate stationary and moving people, no training or empty-room calibration needed (paper in preparation)

Figure: Histogram distance-based RTI (Left) can locate a stationary person while variance-based RTI (Right) cannot.

Outline

1 Introduction

- 2 Shadowing-Based RTI
- 3 Variance-Based RTI
- 4 Histogram Distance-Based RTI
- 5 Conclusion

・ロト・西ト・ヨト・ヨー りへの

UofU / ECE / SPAN

(日)

Features	SRTI	VRTI	SubVRT	HD-RTI
Training?	No	No	No	No
Through-wall?	No	Yes	Yes	Yes
Online calibration?	No	NA	No	Yes
Stationary people?	Yes	No	No	Yes

Table: Comparison of Different RTI methods.

UofU / ECE / SPAN

ъ

Current and Future Work: Large-scale Reliable Systems

- Deploy across 1400 sq. meter in building
- DFL in low-link density
- Multi-channel DFL
- Better Bayesian solutions

UofU / ECE / SPAN

Questions and Comments

More info on http://span.ece.utah.edu/

UofU / ECE / SPAN